Scanning the Internet for ROS

Security is particularly important in robotics. A robot can sense the physical world using sensors, or directly change it with its actuators. Thus, it can leak sensitive information about its environment, or even cause physical harm if accessed by an unauthorized party. Existing work has assessed the state of industrial robot security and found a number of vulnerabilities. However, we are unaware of any studies that gauge the state of security in robotics research.

To address this problem we conducted several scans of the whole IPv4 address space, in order to identify unprotected hosts using the Robot Operating System (ROS), which is widely used in robotics research. Like many research platforms, the ROS designers made a conscious decision to exclude security mechanisms because they did not have a clear model of security threats and were not security experts themselves. The ROS master node trusts all nodes that connect to it, and thus should not be exposed to the public Internet. Nonetheless, our scans identified over 100 publicly-accessible hosts running a ROS master. Of those we found, a number of them are connected to simulators, such as Gazebo, while others appear to be real robots capable of being remotely moved in ways dangerous both to the robot and those around it.

As a qualitative case study, we also present a proof-of-concept “takeover” of one of the robots (with the consent of its owner), to demonstrate that an open ROS master indicates a robot whose sensors can be remotely accessed, and whose actuators can be remotely controlled.
This scan was eye-opening for us, too—we found two of our own robots as part of the scan, one Baxter [5] robot and one drone. Neither was intentionally made available on the public Internet, and both have the potential to cause physical harm if used inappropriately. Read more in our 2019 ICRA paper!

Leave a Reply

Your email address will not be published.