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Abstract— Security is particularly important in robotics, as
robots can directly perceive and affect the physical world.
We describe the results of a scan of the entire IPv4 address
space of the Internet for instances of the Robot Operating
System (ROS), a widely used robotics software platform. We
identified a number of hosts supporting ROS that are exposed to
the public Internet, thereby allowing anyone to access robotic
sensors and actuators. As a proof of concept, and with the
consent of the relevant researchers, we were able to read image
sensor information from and actuate a physical robot present
in a research lab in an American university. This paper gives
an overview of our findings, including our methodology, the
geographic distribution of publicly-accessible platforms, the
sorts of sensor and actuator data that is available, and the
different kinds of robots and sensors that our scan uncovered.
Additionally, we offer recommendations on best practices to
mitigate these security issues in the future.

I. INTRODUCTION

Security is particularly important in robotics. A robot can
sense the physical world using sensors, or directly change
it with its actuators. Thus, it can leak sensitive information
about its environment, or even cause physical harm if ac-
cessed by an unauthorized party. Existing work has assessed
the state of industrial robot security and found a number
of vulnerabilities [1, 2]. However, we are unaware of any
studies that gauge the state of security in robotics research.

To address this problem we conducted several scans of the
whole IPv4 address space, in order to identify unprotected
hosts using the Robot Operating System (ROS) [3], which
is widely used in robotics research. Like many research
platforms, the ROS designers made a conscious decision
to exclude security mechanisms because they did not have
a clear model of security threats and were not security
experts themselves. The ROS master node trusts all nodes
that connect to it, and thus should not be exposed to the
public Internet. Nonetheless, our scans identified over 100
publicly-accessible hosts running a ROS master, shown in
Figure 1. Of those we found, a number of them are connected
to simulators, such as Gazebo [4], while others appear to
be real robots capable of being remotely moved in ways
dangerous both to the robot and those around it. We present
both a quantitative and qualitative overview of our findings.

Quantitatively, we assessed the number of topics that
appear to be sensors and actuators of various types. We
noticed a roughly Zipfian distribution, with a few common
types and a long tail of one-off sensors and actuators. We also
observed that many robots are online for a relatively short
period of time (hours or days) and then go offline again.
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Fig. 1: Approximate locations (slightly jittered to illustrate
multiple points) of ROS masters identified across all scans.
Red indicates a host publishing camera information. Green
indicates a host that showed evidence of a robot which could
be actuated. Other hosts are in blue.

As a qualitative case study, we also present a proof-of-
concept “takeover” of one of the robots (with the consent of
its owner), to demonstrate that an open ROS master indicates
a robot whose sensors can be remotely accessed, and whose
actuators can be remotely controlled.

This scan was eye-opening for us, too—we found two of
our own robots as part of the scan, one Baxter [5] robot and
one drone. Neither was intentionally made available on the
public Internet, and both have the potential to cause physical
harm if used inappropriately.

Our goal is not to single out any researchers or
robot platforms, but to promote security as an important
consideration—not just in production systems, but in re-
search settings as well. We aim to provide information about
a concerning situation and guidance on how roboticists can
improve their security. Note that prior to the release of this
work, we reached out to the owners of all affected robots
and provided them with a summary of our findings.1

II. RELATED WORK

Anecdotally, we are aware of a number of compromised
robots. For example, Baxter [7] robots use an SSH server
with a known default username and password that cannot be
changed by the owner [8]. While the SSH account does not
directly give administrative access, it is still a significant risk

1Further details on our findings and recommendations for ROS users are
available at https://systems.cs.brown.edu/robotsecurity
and in an extended version of our paper [6].

https://systems.cs.brown.edu/robotsecurity


as it can be used as a stepping stone in a multistage attack.
That said, we are unaware of any specific Baxters that were
compromised as a result of this issue.

Denning et al. [9] studied the security and privacy risks
of home robots. They investigated three specific household
robots in 2008, uncovered a number of vulnerabilities, and
surveyed implications for the future. McClean et al. [10]
identified various ROS security issues after setting up a
honeypot at DEFCON-20 (2012), including plaintext com-
munications, open ports, and unencrypted storage. Cerrudo
and Apa [11] identified vulnerabilities in several home and
research robotics platforms, demonstrating weak or non-
existent authentication procedures that allow an attacker to
control robots, perform firmware updates, or gain access to
sensor data.

Quarta et al. [1] and Maggi et al. [2] conduct a security
assessment on an industrial robot controller, combined with
a practical exploit of an arm. They surveyed domain experts
from both academia and industry, and found that 30% had
robots accessible from the Internet, while 76% had never
performed a professional cybersecurity assessment. They
also used Internet search engines, like Shodan and ZoomEye,
to find FTP servers matching industrial devices, identifying
28 robots and thousands of “industrial routers” enabling
remote access to devices. Our results, instead, quantitatively
assess the availability of potentially-vulnerable ROS robots
on the public Internet.

The ROS community has been making efforts to de-
velop security extensions for ROS systems—we refer readers
to [12] for a more comprehensive survey. Most notably, the
SROS project [13, 14], under development by the Open
Source Robotics Foundation (OSRF), updates the ROS API
with TLS [15] to secure connections between nodes and
provides a key distribution service to manage chains of trust
and access controls. The work of Dieber et al. [12] propose
an architecture adding authentication, authorization, and key
management services for individual ROS nodes, as well
as extensions to SROS’ transport layer. However, as these
projects are still in development, neither are yet in wide use.

Rosbridge [16] provides a WebSocket interface to ROS,
which can be used as part of Robot Web Tools [17] to
make robots accessible from the Internet. To facilitate this,
Rosbridge provides TLS support for WebSocket connections,
access controls to limit available topics, and an authorization
mechanism to restrict API calls [17]. However, all of these
features are optional and only apply to clients using the
WebSocket API.

ROS2 [18] is the next iteration of the ROS architecture,
which is currently in development. ROS2 is based on the
Data Distribution System (DDS) standard [19] for data
exchange, a flexible middleware interface to allow users to
customize the underlying transport mechanisms for different
applications. The DDS standard contains optional security
extensions [20], which are in development for ROS under
the SROS2 project [21]. While these are promising steps for
ROS’ future, ROS1 is currently the dominant platform.

III. ROBOT OPERATING SYSTEM (ROS)

The Robot Operating System (ROS) [3] was introduced
by Willow Garage in 2007. ROS operates as a publish-
subscribe service to distribute data among nodes in a system.
A central master service is responsible for tracking published
and subscribed topics and provides a parameter server for
nodes to store various metadata. Nodes can publish data as
topics by advertising to the ROS master service. Other nodes
can subscribe to these topics by querying the master, which
provides the IP address and TCP port number of any nodes
publishing a given topic, allowing the subscriber to contact
the publishers directly to establish further connections.

ROS has a distributed architecture: nodes may run on
the same machine as the master, or on different machines.
The ROS master API is implemented using the XML-RPC
protocol, which is built over HTTP, and typically listens on
TCP port 11311 [22]. Each node runs its own XML-RPC
server that allows the node to advertise the topics it publishes
other nodes, update parameters, publish or subscribe to topics
on other nodes, and receive parameter and publisher updates
from the ROS master [23].

IV. IDENTIFYING ROBOTS USING ROS

We searched for ROS masters connected to the IPv4
Internet address space by scanning all public addresses
(roughly 3.7 billion IPs) on TCP port 11311, the default ROS
master port. Our scans were performed using ZMap [24], a
research tool for performing Internet-wide port scans. Port
scans operate by asynchronously sending probe packets (TCP
SYN) to a set of addresses to gather information about the
hosts that respond. We note that our scans only considered
the default master port—hosts using other ports would not
be observed by our broad scans, but could still be detected
by more targeted scans that probe more ports on each host.

While port scans are very common on the public Internet,
conducting Internet-wide scans poses some inherent risks.
First, and foremost, the volume of traffic sent by a scan could
overwhelm destination networks. For this reason, we chose
ZMap as our scan apparatus because it selects addresses to
scan using a pseudorandom permutation, rather than sending
probes in sequential order, to greatly reduce the number of
packets sent to a network at one time. Second, sending ROS
commands to unknown hosts also has the potential to cause
disruption: e.g., if the host is running a service other than
a ROS master on port 11311. When designing our scanning
framework, we made efforts to minimize potential disruptions
by using a series of minimally-invasive probes to confirm
the presence of a ROS master before sending commands.
Specifically, our scans were conducted in four stages, each
run on successively fewer hosts:

1) A TCP SYN scan to identify hosts accepting connec-
tions on the default ROS master port.

2) A TCP SYN scan on a high-numbered, normally-
closed port (e.g. 58243), to rule out addresses that may
respond on any port to deter scanning [25].



3) An HTTP GET / request on the ROS master port.
The ROS master responds to this request with a specific
error code, ruling out other services.

4) A series of passive ROS commands to collect host
information.

We also scanned for Rosbridge instances, which run
on TCP port 9090 and communicate using a JSON-based
WebSocket protocol. The scanning process for Rosbridge fol-
lowed similar stages, with the exception of using a different
test in stage 3 to identify WebSocket-capable HTTP servers
before sending commands.

Critically, sending commands to active robots may pose
a safety hazard. We selected a minimal set of passive com-
mands designed to confirm that the host was in fact running
ROS and gather data on the topics and parameters available
on each ROS instance. At no time did we attempt to modify
the state of the ROS master, or connect to any nodes, with the
exception of the experiments discussed in Section VI, which
were performed with express permission from the robot’s
operators. Specifically, we called getSystemState to
retrieve the list of publishers, subscribers, and services, and
called getParamNames to get the list of all named pa-
rameters (but not their value). Additionally, we retrieved the
value of the parameter indicating the ROS version, as well
as the robot description parameter which returns the
URDF (Unified Robot Description Format) if present [26].

Our scans were conducted from a host located on our
(university campus) network. Each scan was performed over
a period of 7 weekdays, to ensure a low rate of probe traffic
at destination networks. In accordance with a set of best
practices outlined by the ZMap authors [24], we made efforts
to provide information to any users observing our scans. This
included publishing a web page on our scanning host, with a
description of the scan and a contact email address for more
information or to request removal from further scans. (Note
that over the course of our scanning period, we received only
one automated request to cease probing an organization’s
network, and complied with the request.)

V. QUANTITATIVE RESULTS

We conducted three scans on the ROS master port between
December 2017 and January 2018. We refer to these scans
as Master 1–3, respectively. Each ROS master scan observed
over 100 ROS instances, spanning 28 countries, with over
70% of the observed instances using addresses belonging to
university networks or research institutions. We performed
one scan for Rosbridge instances in November 2017 and
identified 15 total instances, with 11 instances located in
networks recognizable as cloud service providers.

Table I provides a summary of our results, organized into
types based on their topic data. We define a simulator as
a host that showed evidence of one of the robot simulator
topics listed in Section V-A. We define a robot as a host
that shows evidence of a sensor and an actuator, but is not
a simulator. Each type is mutually exclusive, so identified
sensors, actuators, and robots, in this table, did not show
evidence of being a simulator. These results must be taken

TABLE I: Scan results summary.

Category Master 1 Master 2 Master 3 Rosbridge

Identified robots 19 13 12 4
Simulation only 37 32 21 2
Empty ROS cores 37 29 26 0
Only sensors 24 28 18 2
Only actuators 2 1 3 0
Only services 11 8 12 6
Unclassified 14 11 10 1

Total Instances 144 122 102 15

as approximate, since we did not actually subscribe to any of
the topics, consider their type, or verify connectivity with real
hardware. However, given the standardization of topic names,
it seems likely that many of the hosts we found were indeed
running sensors, actuators, and other software. Empty ROS
cores showed only the base rosout topics and services.
Some of these hosts additionally had parameters set (perhaps
indicating some nodes had been running previously, and later
shut down). Unclassified nodes did not fit into any of our
other categories.

We do not combine the results of each scan to form a
“grand total” for each type, as many hosts appeared in more
than one scan and returned different topic data each time. We
discuss these observations in more detail in Section V-B.

Table II shows the number of hosts for every type of
sensor, actuator, and service, for each scan. Each host may
appear in more than one row of this table, for example,
if it contained evidence of a camera, an IMU (Inertial
Measurement Unit), or a joystick. We separate results into
hosts that showed evidence of being a simulator vs. all others.
This way, we can separate hosts that showed evidence of
exposing physical sensors compared to hosts that are likely
only exposing simulated sensors and actuators. We inferred
information about robots from the robot description
parameter, as well as some canonical topic names. The most
common type of robot in our search was the Turtlebot [27].
We also found Baxter robots [5], WAM arms [28], a Da Vinci
research kit [29], drones, vehicles, and one flying insect.

A. Identifying topics

We classified the number of sensors and actuators in
different categories. For privacy and safety reasons, our
scans retrieved only the names of the topics and parameters
available on each ROS master. As we did not subscribe or
publish to any topics, we cannot state with certainty whether
we have found active sensors or actuators. However the list of
topic names provides substantial evidence exposed resources.

With the obtained data stored in a local database, we
constructed queries for various topics of interest in robotics,
and divide our results into sensors and actuators, common li-
braries, and simulators. In constructing queries, we manually
examined the topic list in order to identify topics that map
to different sensors/actuators. As we found indicators, we
added these to the list of queries run on all data to classify
the object. We describe the most prevalent queries below, the
complete list can be found in the extended version [6].



TABLE II: Search results for common robotic system components from topic and parameter names

Category Parameter Master 1 Master 2 Master 3 Rosbridge

Sensors

Phys. HW Sim./Log Phys. HW Sim./Log Phys. HW Sim./Log Phys. HW Sim./Log

Camera 29 22 29 11 22 11 5 1
Camera + Depth 13 15 13 6 9 8 2 1
Camera + RGB 12 7 6 5 9 5 1 1
Camera + Stereo 1 3 1 4 3

Kinect 3 2 3 2 2 2
IMU 14 16 9 16 6 11 2
Lidar 12 13 5 9 2 11 3 2
Motion Capture 4 2 3 1
Compass 3 2 1
Odometry 8 12 6 14 5 11 3 2
Pressure 1 3 1 2 1 1
Contact 4 3 2 3 2 4
Velodyne 4 5 4 2 3 1
point cloud 1 4 1 3 1 1
Radar 1 2 1 1 1 1
Geolocation 4 9 6 8 3 3
Temperature 2 2 1 1
Battery Monitor 4 3 3 2 2 1 5
Joystick 5 2 3 9 2 3 3

Actuators

Phys. HW Sim./Log Phys. HW Sim./Log Phys. HW Sim./Log Phys. HW Sim./Log

Movable base 11 12 8 13 9 9 4 2
Servo 1 1 2
Lights 1 12 1 9 1 6
Arm 4 6 7 2 3 1
Gripper 4 3 1 5 2 2 1

Simulators

Phys. HW Sim./Log Phys. HW Sim./Log Phys. HW Sim./Log Phys. HW Sim./Log

Gazebo 19 18 15 1
Unity 1 1
Playback 3 2

Robot Types

Phys. HW Sim./Log Phys. HW Sim./Log Phys. HW Sim./Log Phys. HW Sim./Log

Baxter 1 1 1
PR2 2 3 2
WAM 1 1 1
JACO 1
Turtlebot 1 1
DaVinci 1

Libraries

Phys. HW Sim./Log Phys. HW Sim./Log Phys. HW Sim./Log Phys. HW Sim./Log

Rosbridge 7 3 8 3 9 2 12 2
RViz 27 15 19 7 15 1
MoveIt! 1 4 2 1
Transform Library (tf) 39 28 32 17 26 15 4 2
Fiducial Libraries 1 2 1 2 1
web video server 2 1 2 1 1 2 2 1

Sensors: Sensors found in our scan included cameras, laser
range finders, barometric pressure sensors, GPS devices,
tactile sensors, and compasses. While camera topics appear
to have the most standardization in terms of topic names
(e.g. camera info or image), we found other viable
search terms as well. Some example sensors and their search
terms included depth cameras (depth registered), LI-
DAR (velodyne, point cloud), biometric pressure sen-
sors (baro) used on drones to control altitude, and various
odometry sensors (odom, odometry).
Actuators: Actuator topic names are much more eclec-
tic. We found several standard topics to indicate an
arm or joint that moves (joint trajectory), as well
as grippers (gripper), and libraries to play sounds
(sound play). As moving robots often use heartbeat sig-

nals for safety reasons, we also considered topics match-
ing heartbeat to indicate the presence of an actuator.
We also found a number of one-off actuator topics: for
example, the topic inceptor command seemed likely
to refer to a topic that sends flight commands; the topic
flystate2phidgetsanalog seems to send voltages for
controlling a faux-fruit fly used in biology experiments [30].
Simulators: We identified many ROS instances that appeared
to be connected to simulated robots. The most obvious were
connected to the Gazebo simulator [4]. We also found groups
that appeared to be using the Unity Game Engine [31], the
game TORCS [32] (torcs ros), and the Stage simula-
tor [33]. In this category we included hosts with parameters
use sim time or fake, which indicate simulated inputs.

Running a simulator with an open ROS master does not



pose the same physical risk as a real robot. However, given
the complexity of a ROS system, and the ability to connect
to other nodes, in many programming languages, it seems
likely that this configuration still poses a threat: the machine
can be compromised through a remote exploit, such as a
buffer overrun in a ROS node.
Common Libraries: We also report evidence of use of
the most common libraries. Examples include MoveIt! [34]
(move group), Rosbridge [16], fiducial marker libraries
such as AprilTags [35] or AR Tags [36].

B. Persistent Hosts vs. Temporary Hosts

We hypothesized that many ROS instances are not always
online, and instead are only available (and visible to scans)
during intermittent periods of usage. Since each of our scans
took place over 7 days, intermittent hosts may not have been
detected if they were not online when their IP address was
scanned. Conversely, a single host may have been detected
multiple times in one scan if its IP address changed during
the scan interval. We examined our results to find hosts that
appeared in multiple scans and those appearing in only one
scan. Comparing, however, host responses between scans
is non-trivial. A single ROS instance may use different
IP addresses, or DNS names, over time due to dynamic
IP allocations (via DHCP) or physical movement between
networks, and may provide different topic and parameter data
based on the host’s activity when scanned.

We devised two methods to provide an approximation
of the number of hosts appearing in multiple scans. First,
some results could be matched to a single host using its
local machine hostname, usually found in the parameter list.
When a machine name was provided, we also matched hosts
with the same IP addresses if they contained a percentage of
similar topics. Further discussion of our matching techniques
is provided in the extended version [6].

We found that 41 hosts were present in all three ROS
master scans, 48 hosts were found in two scans, with the
remaining hosts only observed once. Of the hosts appearing
multiple times, 25 were grouped into different categories (cf.
Table I) in each scan. This demonstrates how a single ROS
instance may have different usage patterns over time. While
this poses a challenge to classification, it also highlights
a further privacy risk, as the topic data can demonstrate
a researcher’s usage patterns. To provide one example, we
found one machine name that appeared three different times
in the scan with three distinct IPs: one with a DNS name
for a university research lab, which showed topics indicating
a simulator; one in another network at the same university,
also with simulator topics; and another IP in a consumer
ISP located near the university, which displayed no topics,
indicating the ROS core was empty.

VI. CASE STUDY: MOBILE MANIPULATOR

We present one case study of one of the robots identified
in our scans to provide a sense of the potential damage that
could occur if a robot was compromised. Further case studies
are available in the extended version [6].

(a) UW’s Robot. (b) Image obtained from the robot’s camera.

(c) View from RVIZ showing 3D point cloud and TF tree.

Fig. 2: Images obtained from the robot’s camera.

Our scans identified the mobile manipulator robot Herb2,
at the University of Washington. This robot was running top-
ics that indicated the presence of a multisense RGB-D sensor,
a node that appears to perform speech production/generation,
as well as a service for moving its neck. The robot also had
parameters indicating the presence of controllers for arms,
but the arm nodes were not available during our scans.

After contacting the robot’s operators, we obtained their
permission to connect to it remotely. During our test, we at-
tempted to gather data from the robot’s sensors and move its
actuators. For safety reasons, we coordinated with the robot’s
operators to ensure the robot was physically monitored
during the test. To mimic the capabilities of a remote attacker,
we made an effort to utilize only the data we obtained from
the ROS master port, as well as public documentation on
ROS packages and services, when sending commands.

We were able to use the camera of the ROS master, as
shown in Figure 2, to view images at 1.5Hz. Note that
camera feed can be obtained without the knowledge, or
consent, of the robot owner or operator (although we did have
knowledge and consent in this case), potentially violating
the privacy of people working with the robot. Additionally,
an attacker could perform reconnaissance by viewing sensor
information: e.g. run a face tracker or a movement sensor on
the images, to determine dangerous times to move the robot.
We were also able to view joint angles, obtained from the
TF tree, as well as a 3D point cloud, visible in Figure 2c.

We tried to actuate the robot by playing sounds and
moving its neck. The robot used a custom service for per-



forming speech synthesis. In ROS, calling a service requires
knowledge of its service files, which describe the data format
it accepts. As the source code was publicly available [37],
we were able to play sounds on the robot by installing and
writing a script to send the action. Many other services have
similarly well-known topics, e.g. ros control [38], which
could be accessed in this way.

Moving the robot’s neck presented a more significant
challenge: the service to move it used custom software not
released by the lab. As a result, although we could see
that the service existed, we did not know the format of the
service file to specify calls. ROS does not permit service
calls unless the MD5 checksums of the service files between
the two nodes match. Since MD5 is not a cryptographically
secure hash [39], and instead is only useful for checking
data integrity, it may be possible for a determined attacker
to reconstruct the service files with partial knowledge of the
data format. In our test, we left this component to future work
and simply asked the lab to provide the service files, which
we used to construct a ROS package and actuate the neck.
Notably, the lab informed us that we could have damaged the
robot by actuating the neck to certain out-of-bounds values.

VII. RECOMMENDATIONS FOR IMPROVED SECURITY

We contacted the owner(s) of the hosts identified as
ROS instances to notify them of our findings and provide
recommendations for how users can fix their security. To
help promote awareness, we have also contributed a page to
the ROS wiki2 outlining recommendations on how ROS can
be used in more secure configurations.

Long term, we advise ROS users–especially those build-
ing Internet-facing applications—to investigate migrating to
ROS2 with security extensions, which offers robust security
features at both the application and transport layers. In the
meantime, our recommendations focus on securing ROS1 at
the network layer to provide a stopgap solution for the most
critical security issues.
Detecting Exposure: At minimum, we recommend that users
inspect their network exposure using tools such as nmap [40]
and nc [41] from a host outside their organizational network.
We advise researchers to consult organizational policies
on conducting scans, and potentially coordinate with their
network administrators, before scanning many addresses.
Firewall: One way to secure ROS instances against unau-
thorized access is to use a firewall to prevent exposure of
ROS services to the public Internet. We recommend that ROS
users define a trust zone on a network where ROS traffic is
permitted to perform tasks, and take steps to restrict network
access to ROS hosts outside this segment.

A common—but insufficient—practice to create a small
private network is to use a common wireless router, or other
device, to provide Internet access to a private IP range (e.g.
192.168.*.*) using NAT. By design, NAT blocks incoming
connections from outside the network, meaning a ROS
master behind a NAT would not be visible to the Internet

2https://wiki.ros.org/Security

by default. While NAT provides a first step to blocking
external traffic, NAT is not a security apparatus: an internal
host that makes external connections can still leak data,
and NAT implementations can be misconfigured or, in some
cases, exploited to open ports for outside access [42, 43, 44].
Therefore, we recommend using a more complete firewall
solution, or an isolated network. We encourage researchers
to coordinate with their organization’s IT services to develop
an effective solution. At minimum, traffic on the ROS master
port should not be permitted from outside hosts. ROS traffic
on other services is difficult to block, since port numbers
are allocated dynamically by the master. For client machines
using ROS, we suggest using an OS-level firewall (e.g.,
Netfilter [45]) to restrict incoming traffic except on trusted
networks. This is especially important for ROS users on
laptops or mobile devices, which may operate from both
trusted and untrusted networks.
VPN: In some cases, it may be necessary for a robot to
be operated outside a trusted network. Remote access can
be provided using a Virtual Private Network (VPN). If
available, a VPN provides a comprehensive way to permit
only authorized hosts to access a ROS master. VPNs are
considered the best practice for securing a ROS system by
the Open Source Robotics Foundation and were configured
on every PR2 that shipped.
Rosbridge: Rosbridge is an alternative interface to ROS that
provides certain security benefits. Rosbridge acts as a proxy
for the ROS master API, allowing users to specify protected
topics that will not be served to clients. Further, it provides
an optional authorization mechanism using MACs [46] pro-
viding a way to define flexible access control policies.

VIII. CONCLUSION

Though a few unsecured robots might not seem like a
critical issue, our study shows that a number of research
robots are accessible and controllable from the Internet,
demonstrating a risk to user safety and privacy. It is therefore
important to develop mechanisms for using these powerful
tools, while also securing them from malicious actors. We
hope that more roboticists will become aware of the security
issues involved as a result of our work, and take steps to
secure their platforms. As robots move out of the lab and
into industries and home settings, the number of units that
could be subverted is bound to increase—recent attacks on
the Internet infrastructure from home devices serve as a clear
warning. Consequently, it becomes imperative to provide
adequate security for devices that can change not just the
virtual world, but the physical world as well.
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