
Multi-Resolution POMDP Planning for Multi-Object Search in 3D

Kaiyu Zheng†, Yoonchang Sung∗, George Konidaris†, Stefanie Tellex†

Abstract— Robots operating in households must find objects
on shelves, under tables, and in cupboards. In such environ-
ments, it is crucial to search efficiently at 3D scale while coping
with limited field of view and the complexity of searching
for multiple objects. Principled approaches to object search
frequently use Partially Observable Markov Decision Process
(POMDP) as the underlying framework for computing search
strategies, but constrain the search space in 2D. In this paper, we
present a POMDP formulation for multi-object search in a 3D
region with a frustum-shaped field-of-view. To efficiently solve
this POMDP, we propose a multi-resolution planning algorithm
based on online Monte-Carlo tree search. In this approach, we
design a novel octree-based belief representation to capture
uncertainty of the target objects at different resolution levels,
then derive abstract POMDPs at lower resolutions with dra-
matically smaller state and observation spaces. Evaluation in
a simulated 3D domain shows that our approach finds objects
more efficiently and successfully compared to a set of baselines
without resolution hierarchy in larger instances under the same
computational requirement. We demonstrate our approach on
a mobile robot to find objects placed at different heights in two
10m2×2m regions by moving its base and actuating its torso.

I. INTRODUCTION

Robots operating in human spaces must find objects such

as glasses, books, or cleaning supplies that could be on

the floor, shelves, or tables. This search space is naturally

3D. When multiple objects must be searched for, such as

a cup and a mobile phone, an intuitive strategy is to first

hypothesize likely search regions for each target object based

on semantic knowledge or past experience [1, 2], then search

carefully within those regions. Since the latter directly deter-

mines the success of the search, it is essential for the robot

to produce an efficient search policy within a designated

search region under limited field of view (FOV), where target

objects could be partially or completely occluded. In this

work, we consider the problem setting where a robot must

search for multiple objects in a search region by actively

moving its camera, with as few steps as possible (Figure 1).

Searching for objects in a large search region requires

acting over long horizons under various sources of uncer-

tainty in a partially observable environment. For this reason,

previous works have used Partially Observable Markov De-

cision Process (POMDP) as a principled decision-theoretic

framework for object search [3, 4, 5]. However, to ensure

the POMDP is manageable to solve, previous works reduce

the search space or robot mobility to 2D [2, 6, 7], although

objects exist in rich 3D environments. The key challenges lie

in the intractability of maintaining exact belief due to large

state space [8], and the high branching factor for planning

due to large observation space [9, 10].

†Brown University, Providence, RI. ∗MIT CSAIL, Cambridge, MA.
Email: {kzheng10, gdk, stefie10}@cs.brown.edu, yooncs8@csail.mit.edu

Fig. 1: An example of the 3D-MOS problem where a torso-actuated
mobile robot is tasked to search for three objects placed at different
heights in a lab environment. The objects are represented by paper
AR tags marked by red boxes. Note that the robot must actively
move itself due to limited field of view, and the objects can be
occluded by the attached obstacles if viewed from the side.

In this paper, we introduce 3D Multi-Object Search (3D-

MOS), a general POMDP formulation for the multi-object

search task with 3D state and action spaces, and a realistic

observation space in the form of labeled voxels within

the viewing frustum from a mounted camera. Following

the Object-Oriented POMDP (OO-POMDP) framework pro-

posed by Wandzel et al. [6], the state, observation spaces are

factored by independent objects, allowing the belief space

to scale linearly instead of exponentially in the number

of objects. We address the challenges of computational

complexity in solving 3D-MOS by developing several tech-

niques that converge to an online multi-resolution planning

algorithm. First, we propose a per-voxel observation model

which drastically reduces the size of the observation space

necessary for planning. Next, we present a novel octree-based

belief representation that captures beliefs at different resolu-

tions and allows efficient and exact belief updates. Then,

we exploit the octree structure and derive abstractions of

the ground problem at different resolution levels leveraging

abstraction theory for MDPs [11, 12]. Finally, a Monte-

Carlo Tree Search (MCTS) based online planning algorithm,

called Partially-Observable Upper Confidence bounds for

Trees (POUCT) [8], is employed to solve these abstract

instances in parallel, and the action with highest value in

its MCTS tree is selected for execution.

We evaluate the proposed approach in a simulated, dis-

cretized 3D domain where a robot with a 6 degrees-of-

freedom camera searches for objects of different shapes and

sizes randomly generated and placed in a grid environment.

The results show that, as the problem scales, our approach

outperforms exhaustive search as well as POMDP baselines

without resolution hierarchy under the same computational

requirement. We also show that our method is more robust to

sensor uncertainty against the POMDP baselines. Finally, we

demonstrate our approach on a torso-actuated mobile robot

in a lab environment (Figure 6). The robot finds 3 out of 6

objects placed at different heights in two 10m2×2m regions

in around 15 minutes.

II. BACKGROUND

POMDPs compactly represent the robot’s uncertainty in

target locations and its own sensor [13], and OO-POMDPs

factor the domain in terms of objects, which fits the object

search problem naturally [6]. Below, we first provide a brief

overview of POMDPs and OO-POMDPs. Then, we discuss

related work in object search.

A. POMDPs and OO-POMDPs

A POMDP models a sequential decision making prob-

lem where the environment state is not fully observ-

able by the agent. It is formally defined as a tuple

〈S,A,O, T, O,R, γ〉, where S,A,O denote the state, action

and observation spaces, and the functions T (s, a, s′) =
Pr(s′|s, a), O(s′, a, o) = Pr(o|s′, a), and R(s, a) ∈ R

denote the transition, observation, and reward models. The

agent takes an action a ∈ A that causes the environment

state to transition from s ∈ S to s′ ∈ S . The environment

in turn returns the agent an observation o ∈ O and reward

r ∈ R. A history ht = (ao)1:t−1 captures all past actions and

observations. The agent maintains a distribution over states

given current history bt(s) = Pr(s|ht). The agent updates

its belief after taking an action and receiving an observa-

tion by bt+1(s
′) = ηPr(o|s′, a)

∑

s Pr(s
′|s, a)bt(s) where

η =
∑

s

∑

s′ Pr(o|s
′, a) Pr(s′|s, a)bt(s) is the normalizing

constant. The task of the agent is to find a policy π(bt) ∈
A which maximizes the expectation of future discounted

rewards V π(bt) = E
[
∑∞

k=0 γ
kR(st+k, π(bt+k)) | bt

]

with

a discount factor γ.

An Object-Oriented POMDP (OO-POMDP) [6] (general-

ization of OO-MDP [14]) is a POMDP that considers the

state and observation spaces to be factored by a set of n

objects where each belongs to a class with a set of attributes.

A simplifying assumption is made for the 2D MOS domain

that objects are independent so that the belief space scales

linearly rather than exponentially in the number of objects:

bt(s) =
∏

i b
i
t(si). We make this assumption for the same

computational reason.

Offline POMDP solvers are often too slow to be practi-

cal for large domains [15]. State-of-the-art online POMDP

solvers leverage sparse belief sampling and MCTS to scale

up to domains with large state spaces and to address the

curse of history [8, 16, 9]. POMCP [8] is one such algorithm

which combines particle belief representation with Partially

Observable UCT (POUCT), which extends the UCT algo-

rithm [17] to POMDPs and is proved to be asymptotically

optimal [8]. We build upon POUCT due to its optimality and

simplicity of implementation.

B. Related Work

Previous work primarily address the computational com-

plexity of object search by hypothesizing likely regions based

on object co-occurrence [1, 18], semantic knowledge [2]

or language [6], reducing the state space from 3D to 2D

[6, 19, 20, 21], or constrain the sensor to be stationary [5, 22].

Our work focuses on multi-object search within a 3D region

where the robot actively moves the mounted camera, for

example, through pan or tilt, or by moving itself.

Several works explicitly reason over the arrangement of

occluded objects based on given geometry models of clutter

[3, 21, 23]. Our approach considers occlusion as part of

the observation that contains no information about target

locations and we do not require geometry models.

Many works formulate object search as a POMDP. No-

tably, Aydemir et al. [2] first infer a room to search in

then perform search by calculating candidate viewpoints in

a 2D plane. Li et al. [7] plan sensor movements online, yet

assume objects are placed at the same surface level in a

container with partial occlusion. Xiao et al. [3] address object

fetching on a cluttered tabletop where the robot’s FOV fully

covers the scene, and that occluding obstacles are removed

permanently during search. Wandzel et al. [6] formulates

the multi-object search (MOS) task on a 2D map using

the proposed Object-Oriented POMDP (OO-POMDP). We

extend that work to 3D and tackle additional challenges by

proposing a new observation model and belief representation,

and a multi-resolution planning algorithm. In addition, our

POMDP formulation allows fully occluded objects and can

be in principle applied on different robots such as mobile

robots or drones.

III. MULTI-OBJECT SEARCH IN 3D

The robot is tasked to search for n static target objects

(e.g. cup and book) of known type but unknown location in

a search space that also contains static non-target obstacles.

We assume the robot has access to detectors for the objects

that it is searching for. The search region is a 3D grid map

environment denoted by G. Let g ∈ G ⊆ R3 be a 3D

grid cell in the environment. We use Gl to denote a grid

at resolution level l ∈ N, and gl ∈ Gl to denote a grid cell

at this level. When l is omitted, it is assumed that g is at the

ground resolution level. We introduce the 3D-MOS domain

as an OO-POMDP as follows:

State space S . An environment state s = {s1, · · · , sn, sr}
is factored in an object-oriented way, where sr ∈ Sr is the

state of the robot, and si ∈ Si is the state of target object i.

A robot state is defined as sr = (p,F) ∈ Sr where p is the

6D camera pose and F is the set of found objects. The robot

state is assumed to be observable to the robot. In this work,

we consider the object state to be specified by one attribute,

the 3D object pose at its center of mass, corresponding to

a cell in grid G. We denote a state sli ∈ S
l
i to be an object

state at resolution level l, where Sli = Gl.

Observation space O. The robot receives an observation

through a viewing frustum projected from a mounted camera.

The viewing frustum forms the FOV of the robot, denoted

Fig. 2: Illustration of the viewing frustum and volumetric observa-
tion. The viewing frustum V consists of |V | voxels, where each
v ∈ V can be labeled as i ∈ {1, · · · , n}, FREE or UNKNOWN.

by V , which consists of |V | voxels. Note that the resolution

of a voxel should be no lower than that of a 3D grid cell

g. We assume both resolutions to be the same in this paper

for notational convenience, hence V ⊆ G, but in general

a voxel with higher resolution can be easily mapped to a

corresponding grid cell.

For each voxel v ∈ V , a detection function d(v) labels

the voxel to be either an object i ∈ {1, · · · , n}, FREE, or

UNKNOWN (Figure 2). FREE denotes that the voxel is a free

space or an obstacle. We include the label UNKNOWN to take

into account occlusion incurred by target objects or static

obstacles. In this case, the corresponding voxel in V does not

give any information about the environment. An observation

o = {(v, d(v))|v ∈ V } is defined as a set of voxel-label

tuples. This can be thought of as the result of voxelization

and object segmentation given a raw point cloud.

We can factor o by objects in the following way. First,

given the robot state sr at which o is received, the voxels

in V have known locations. Under this condition, V can

be reduced to exclude voxels labeled UNKNOWN while still

maintaining the same information. Then, V can be decom-

posed by objects into V1, · · · , Vn where for any v ∈ Vi,

d(v) ∈ {i, FREE} which retain the same information as V

for a given robot state.1 Hence, the observation o =
⋃n

i=1 oi
where oi = {(v, d(v))|v ∈ Vi}.

Action space A. Searching for objects generally requires

three basic capabilities: moving, looking, and declaring an

object to be found at some location. Formally, the action

space consists of these three types of primitive actions:

MOVE(sr, g) action moves the robot from pose in sr to

destination g ∈ G stochastically. LOOK(θ) changes the

camera pose to look in the direction specified by θ ∈ R
3,

and projects a viewing frustum V . FIND(i, g) declares object

i to be found at location g. The implementation of these

actions may vary depending on the type of search space or

robot. Note that this formulation allows macro actions, such

as “look after move” to be composed for planning.

Transition function T . Target objects and obstacles are

static objects, thus Pr(s′i|s, a) = 1(s′i = si). For the robot,

the actions MOVE(sr, g) and LOOK(θ) change the camera

location and direction to g and θ following a domain-specific

1The FOV V is fixed for a given camera pose in the robot state, therefore
excluding UNKNOWN voxels does not lose information.

stochastic dynamics function. The action FIND(i, g) adds i

to the set of found objects in the robot state only if g is

within the FOV determined by sr.

Reward function R. The correctness of declarations can

only be determined by, for example, a human who has

knowledge about the target object or additional interactions

with the object; therefore, we consider declarations to be

expensive. The robot receives Rmax ≫ 0 if an object is

correctly identified by a FIND action, otherwise the FIND

action incurs a Rmin ≪ 0 penalty. MOVE and LOOK receive

a negative step cost Rstep < 0 dependent on the robot state

and the action itself. This is a sparse reward function.

A. Observation Model

We have previously described how a volumetric observa-

tion o can be factored by objects into o1, · · · , on. Here, we

describe a method to model Pr(oi|s
′, a), the probabilistic

distribution over an observation oi for object i.

Modeling a distribution over a 3D volume is a challenging

problem [24]. To develop an efficient model, we make the

simplifying assumption that object i is contained within a

single voxel located at the grid cell g = s′i. We address

the case of searching for objects of unknown sizes with

our planning algorithm (Section V) that plans at multiple

resolutions in parallel.

Under this assumption, d(v) = FREE deterministically for

v 6= s′i, and the uncertainty of oi is reduced to the uncertainty

of d(s′i). As a result, Pr(oi|s
′, a) can be simplified to

Pr(d(si)|s
′, a). When s′i 6∈ Vi, either d(s′i) = UNKNOWN

(occlusion) or s′i 6∈ V (not in FOV). In this case, there is no

information regarding the value of d(s′i) in the observation

oi, therefore Pr(d(s′i)|s
′, a) is a uniform distribution. When

s′i ∈ Vi, that is, the non-occluded region within the FOV

covers s′i, the case of d(s′i) = i indicates correct detec-

tion while d(s′i) = FREE indicates sensing error. We let

Pr(d(s′i) = i|s′, a) = α and Pr(d(s′i) = FREE|s′, a) = β.

It should be noted that α and β do not necessarily sum

to one because the belief update equation does not require

the observation model to be normalized, as explained in

Section II-A. Thus, hyperparameters α and β independently

control the reliability of the observation model.

IV. OCTREE BELIEF REPRESENTATION

Particle belief representation [8, 16] suffers from particle

depletion under large observation spaces. Moreover, if the

resolution of G is dense, it may be possible that most of 3D

grid cells do not contribute to the behavior of the robot.

We represent a belief state bit(si) for object i as an octree,

referred to as an octree belief. It can be constructed incre-

mentally as observations are received and it tracks the belief

of object state at different resolution levels. Furthermore, it

allows efficient belief sampling and belief update using the

per-voxel observation model (Sec. III-A).

An octree belief consists of an octree and a normalizer.

An octree is a tree where every node has 8 children. In our

context, a node represents a grid cell gl ∈ Gl, where l is the

resolution level, such that gl covers a cubic volume of (2l)3

ground-level grid cells; the ground resolution level is given

Fig. 3: Illustration the octree belief representation bit(si). The color

on a node gl indicates the belief VAL
i

t(g
l) that the object is

located within gl. The highlighted grid cells indicate parent-child
relationship between a grid cell at resolution level l = 1 (parent)
and one at level l = 0.

by l = 0. The 8 children of the node equally subdivide

the volume at gl into smaller volumes at resolution level

l − 1 (Figure 3). Each node stores a value VAL
i
t(g

l) ∈ R,

which represents the unnormalized belief that sli = gl,

that is, object i is located at grid cell gl. We denote the

set of nodes at resolution level k < l that reside in a

subtree rooted at gl by CH
k(gl). By definition, bit(g

l) =
Pr(gl|ht) =

∑

c∈CHk(gl) Pr(c|ht). Thus, with a normalizer

NORMt =
∑

g∈G VAL
i
t(g), we can rewrite the normalized

belief as:

bit(g
l) =

VAL
i
t(g

l)

NORMt

=
∑

c∈CHk(gl)

(

VAL
i
t(c)

NORMt

)

, (1)

which means VAL
i
t(g

l) =
∑

c∈CHk(gl) VAL
i
t(c). In words,

the value stored in a node is the sum of values stored in its

children. The normalizer equals to the sum of values stored

in the nodes at the ground resolution level.

The octree does not need to be constructed fully in order

to query the probability at any grid cell. This can be achieved

by setting a default value VAL
i
0(g) = 1 for all ground

grid cells g ∈ G not yet present in the octree. Then, any

node corresponding to gl has a default value of VAL
i
0(g

l) =
∑

c∈CH1(gl) VAL
i
0(c) = |CH

1(gl)|.

A. Belief Update

We have defined a per-voxel observation model for

Pr(oi|s
′, a), which is reduced to Pr(d(s′i)|s

′, a) if s′i ∈ Vi,

or a uniform distribution if s′i 6∈ Vi. This suggests that the

belief update need only happen for voxels that are inside the

FOV to reflect the information in the observation.

Upon receiving observation oi within the FOV Vi, belief

is updated according to Algorithm 1. This algorithm updates

the value of the ground-level node g corresponding to each

voxel v ∈ Vi as VAL
i
t+1(g) = Pr(d(v)|s′, a)VAL

i
t(g). The

normalizer is updated to make sure bit+1 is normalized

Lemma 1: The normalizer NORMt at time t can be cor-

rectly updated by adding the incremental update of values as

in Algorithm 1.

Proof: The normalizer must be equal to the sum of

node values at the ground level for the next belief bit+1 to be

valid (Equation 1). That is, NORMt+1 =
∑

si∈G VAL
i
t+1(si).

This sum can be decomposed into two cases where the object

i is inside of Vi and outside of Vi; For object locations

Algorithm 1: OctreeBeliefUpdate (bit, a, oi)→ bit+1

input : bit: octree belief for object i; a: action taken

by robot; oi = {(v, d(v)|v ∈ Vi}: factored

observation for object i

output: bit+1: updated octree belief

// Let Ψ(bt
i
) denote the octree underlying bi

t
.

for v ∈ Vi do
si ← v; // State at grid cell corresponding to voxel v

if si 6∈ Ψ(bti) then

Insert node at si to Ψ(bti);
end

VAL
i
t+1(si)← Pr(d(v)|s′, a)VAL

i
t(si);

NORMt+1 ← NORMt + VAL
i
t+1(si)− VAL

i
t(si);

end

si 6∈ Vi, the unnormalized observation model is uniform, thus

VAL
i
t+1(si) = Pr(d(si)|s

′, a)VAL
i
t(si) = VAL

i
t(si). There-

fore, NORMt+1 =
∑

si∈Vi
VAL

i
t+1(si) +

∑

si 6∈Vi
VAL

i
t(si).

Note the set {si|si 6∈ Vi} is equivalent as {si|si ∈ G \ Vi}.
Using this fact and the definition of NORMt, we obtain

NORMt+1 = NORMt +
∑

si∈Vi

(

VAL
i
t+1(si)− VAL

i
t(si)

)

which proves the lemma.

This belief update is therefore exact since the objects are

static. The complexity of this algorithm is O(|V | log(|G|);
Inserting nodes and updating values of nodes can be done

by traversing the tree depth-wise.

B. Sampling

Octree belief affords exact belief sampling at any resolu-

tion level in logarithmic time complexity with respect to the

size of the search space |G|, despite not being completely

built. Given resolution level l, we sample from Sli by

traversing the octree in a depth-first manner. Let lmax denote

the maximum resolution level for the search space. Let ldes
be the desired resolution level at which a state is sampled.

If sldesi is sampled, then all nodes in the octree that cover

sldesi , i.e, slmax

i , · · · , sldes+2
i , sldes+1

i , must also be implicitly

sampled. Also, the event that sl+k
i is sampled is independent

from other samples given that sl+k+1
i is sampled. Hence, the

task of sampling sldes is translated into sampling a sequence

of samples slmax

i , · · · , sldes+2
i , sldes+1

i , sldesi , each according

to the distribution Pr(sli|s
l+1
i , ht) =

VAL
i

t
(sl

i
)

VALi

t
(sl+1

i
)
. Sampling

from this probability distribution is efficient, as the sample

space, i.e. the children of node sl+1
i is only of size 8.

Therefore, this sampling scheme yields a sample sldes exactly

according to bit(s
ldes) with time complexity O(log(|G|)).

V. MULTI-RESOLUTION PLANNING VIA ABSTRACTIONS

POUCT expands an MCTS tree using a generative func-

tion (s′, o, r) ∼ G(s, a), which is straightforward to acquire

since we explicitly define the 3D-MOS models. However,

directly applying POUCT is subject to high branching factor

due to the large observation space in our domain.

Our intuition is that octree belief imposes a spatial state

abstraction, which can be used to derive an abstraction over

observations, reducing the branching factor for planning.

Below, we formulate an abstract 3D-MOS with smaller

spaces, and propose our multi-resolution planning algorithm.

A. Abstract 3D-MOS

We adopt the abstraction scheme in Li et al. [11] where

in general, the abstract transition and reward functions are

weighted sums of the original problem’s transition and

reward functions, respectively with weights that sum up to 1.

We define an abstract 3D-MOS 〈Ŝ, Â, Ô, T̂ , Ô, R, γ, l〉 at

resolution level l as follows.

State space Ŝ . For each object i, an abstraction function

φi : Si → S
l
i transforms the ground-level object state si to an

abstract object state sli at resolution level l. The abstraction

of the full state is ŝ = φ(s) = {sr} ∪
⋃

i φi(si) where the

robot state sr is kept as is. The inverse image φ−1
i (sli) is the

set of ground states that correspond to sli under φi [11].

Action space Â. Since state abstraction lowers the reso-

lution of the search space, we consider macro move actions

that move the robot over longer distance at each planning

step. Each macro move action MOVEOP(sr, g) is an option

[25] that moves sr to goal location g using multiple MOVE

actions. The primitive LOOK and FIND actions are kept.

Transition function T̂ . Targets and obstacles are still

static, and the robot state still transitions according to the

ground-level transition function. However, the transition of

the found set from F to F ′ is special since the action

FIND(i, g) operates at the ground level while sli has a lower

resolution (l > 0). Let fi be the binary state variable that

is true if and only if object i ∈ F . Because the action

FIND(i, g) affects fi based only on whether object i is

located at g, and that the problem is no longer Markovian

due to state abstraction [12], fi transitions to f ′
i following

Pr(f ′
i |fi, s

l
i, ht, FIND(i, g)) (2)

=
∑

si∈φ
−1

i
(sl

i
)

Pr(f ′
i |si, fi, FIND(i, g)) Pr(si|s

l
i, ht). (3)

The above is consistent with the abstract transition function

in the works [11, 12] where the first term corresponds to the

ground-level deterministic transition function and the second

term Pr(si|s
l
i, ht), stored in the octree belief, is the weight

that sums up to 1 for all si ∈ Si.
Observation space Ô and function Ô. For the purpose

of planning, we again use the assumption that an object is

contained within a single voxel (yet at resolution level l).

Then, given state ŝ′, the abstract observation oli is regarded

as a voxel-label pair (sli, d(s
l
i)). Since it is computationally

expensive to sum out all object states, we approximate the

observation model by ignoring objects other than i:

Pr(oli|ŝ
′, a, ht) = Pr(d(sli)|ŝ

′, a, ht) (4)

≈ Pr(d(sli)|s
l
i, sr, a, ht) (5)

=
∑

si∈φ
−1

i
(sl

i
)

Pr(d(sli)|si, sr, a) Pr(si|s
l
i, ht). (6)

This resembles the abstract transition function, where

Pr(d(sli)|si, sr, a) is the ground observation function, and

Algorithm 2: MR-POUCT (P, bt, d)→ â

input : P: a set of abstract 3D-MOS instances at

different resolution levels; bt: belief at time

t; d: planning depth

output: â: an action in the action space of some

Pl ∈ P
procedure Plan(bt)

foreach Pl ∈ P in parallel do
// Recall that Pl = 〈Ŝ, Â, Ô, T̂ , Ô, R, γ, l〉

G ← GenerativeFunction(Pl);

QP (bt, â)← POUCT(G, ht, d);

end

â← argmaxâ{QP (bt, â)|P ∈ P};
return â

Pr(si|s
l
i, ht) is again the weight.

For practical POMDP planning, it can be inefficient to

sample from this abstract observation model if l is large.

In our implementation, we approximate this distribution by

Monte Carlo sampling [26]: We sample k ground states from

φ−1
i (sli) according to their weights.2 Then we set d(sli) = i

if the majority of these samples have d(si) = i, and d(sli) =
FREE otherwise. A similar approach is used for sampling

from the abstract transition model.

Reward function R. The reward function is the same as

the one in ground 3D-MOS, since computing the reward only

depends on the robot state which is not abstracted and the

abstract action space consists of the same primitive actions as

3D-MOS. Therefore, solving an abstract 3D-MOS is solving

the same task as the original 3D-MOS.

B. Multi-Resolution Planning Algorithm

Abstract 3D-MOS is smaller than the original 3D-MOS

which may provide benefit in online planning. However, it

may be difficult to define a single resolution level, due to the

uncertainty of the size or shape of objects, and the unknown

distance between the robot and these objects.

Therefore, we propose to solve a number of abstract 3D-

MOS problems in parallel, and select an action from Â with

the highest value for execution. The algorithm is formally

presented in Algorithm 2. The set of abstract 3D-MOS

problems, P , can be defined based on the dimensionality

of the search space and the particular object search setting.

Then, it is straightforward to define a generative function

G(ŝ, â) → (ŝ′, ô, r) from an abstract 3D-MOS instance

P using its transition, observation and reward functions.

POUCT uses G to build a search tree and plan the next action.

Thus, all problems in P are solved online in parallel, each by

a separate POUCT. The final action with the highest value

QP (bt, â) in its respective POUCT search tree is chosen

as the output (see [8] for details on POUCT). We call this

algorithm Multi-Resolution POUCT (MR-POUCT).

2We tested k = 10 and k = 40 and observed similar search performance.
We used k = 10 in our experiments.

Fig. 4: Simulated environment for 3D object search. The robot
(represented as a red cube) can project a viewing frustum to observe
the search space, where objects are represented by sets of cubes.
Search space size scales from 43 to 323. The tuple (m,n, d) at
lower-right defines the problem instance.

VI. EXPERIMENTS

We assess the hypothesis that our approach, MR-POUCT,

improves the robot’s ability to efficiently and successfully

find objects especially in large search spaces. We conduct a

simulation evaluation and a study on a real robot.

A. Simulation Evaluation

Setup. We implement our approach in a simulated en-

vironment designed to reflect the essence of the 3D-MOS

domain (Figure 4). Each simulated problem instance is

defined by a tuple (m,n, d), where the search region G has

size |G| = m3 with n randomly generated, randomly placed

objects. The on-board camera projects a viewing frustum

with 45 degree FOV angle, an 1.0 aspect ratio, a minimum

range of 1 grid cell, and a maximum range of d grid cells.

Hence, we can increase the difficulty of the problem by

increasing m and n, or by reducing the percentage of voxels

covered by a viewing frustum through reducing the FOV

range d. Occlusion is simulated using perspective projection

and treating each grid cell as a point.

There are two primitive MOVE actions per axis (e.g. +z,

−z) that each moves the robot along that axis by one grid

cell. There are two LOOK actions per axis, one for each

direction. Finally, a FIND action is defined that declares all

not-yet-found objects within the viewing frustum as found.

Thus, the total number of primitive actions is 13. MOVE and

LOOK actions have a step cost of -1. A successful FIND

receives +1000 while a failed attempt receives -1000. A

FIND action is successful if part of a new object lies within

the viewing frustum. If multiple new objects are present

within one viewing frustum when the FIND is taken, only the

maximum reward of +1000 is received. The task terminates

either when the total planning time limit is reached or n

FIND actions are taken.

Baselines. We compare our approach (MR-POUCT) with

the following baselines: POUCT uses the octree belief

but solves the ground POMDP directly using the original

POUCT algorithm. Options+POUCT uses the octree belief

and a resolution hierarchy, but only the motion action ab-

straction (i.e. MOVEOP options) is used, meaning that the

agent can move for longer distances per planning step but do

not make use of state and observation abstractions. POMCP

uses a particle belief representation which is subject to par-

ticle deprivation. Uniform random rollout policy is used for

all POMDP-based methods. Exhaustive uses a hand-coded

exhaustive policy, where the agent traverses every location

in the search environment. At every location, the agent takes

a sequence of LOOK actions, one in each direction. Finally,

Random executes actions at uniformly at random.

Each algorithm begins with uniform prior and is allowed

a maximum of 3.0s for planning each step. The total amount

of allowed planning time plus time spent on belief update is

120s, 240s, 360s, and 480s for environment sizes (m) of 4,

8, 16, or 32, respectively. Belief update is not necessary for

Exhaustive and Random. The maximum number of planning

steps is 500. The discount factor γ is set to 0.99. For each

(m,n, d) setting, 40 trials (with random world generation)

are conducted.

Results. We evaluate the scalability of our approach with

4 different settings of search space size m ∈ {4, 8, 16, 32}
and 3 settings of number of objects n ∈ {2, 4, 6}, resulting

in 12 combinations. The FOV range d is chosen such that

the percentage of the grids covered by one projection of the

viewing frustum decreases as the world size m increases.3

The sensor is assumed to be near-perfect, with α = 105 and

β = 0. We measure the discounted cumulative reward, which

reflects both the search efficiency and effectiveness, as well

as the number of objects found per trial.

Results are shown in Figure 5. Particle deprivation happens

quickly due to large observation space, and the behavior

degenerates to a random agent, causing POMCP to perform

poorly. In small-scale domains, the Exhaustive approach

works well, outperforming the POMDP-based methods. We

find that in those environments, the FOV can capture a signif-

icant portion of the environment, making exhaustive search

desirable. The POMDP-based approaches are competitive or

better in the two largest search environments (m = 16 and

m = 32). In particular, MR-POUCT outperforms Exhaustive

in all test cases in the larger environments, with greater

margin in discounted cumulative reward; Exhaustive takes

more search steps but is less efficient. When the search

space contains fewer objects, MR-POUCT and POUCT show

more resilience than Options+POUCT, with MR-POUCT

performing consistently better. This demonstrates the benefit

of planning with the resolution hierarchy in octree belief

especially in large search environments.

We then investigate the performance of our method with

respect to changes in sensing uncertainty, controlled by the

parameters α and β of the observation model. According

to the belief update algorithm in Section IV-A, a noisy

but functional sensor should increase the belief VAL
i
t(g)

for object i if an observed voxel at g is labeled i, while

decrease the belief if labeled FREE. This implies that a

properly working sensor should satisfy α > 1 and β < 1. We

investigate on 5 settings of α ∈ {10, 100, 500, 103, 104, 105}
and 2 settings of β ∈ {0.3, 0.8}. A fixed problem difficulty

3The maximum FOV coverage for m = 4, 8, 16, and 32 is 17.2%(d =
4), 8.8%(d = 6), 4.7%(d = 10), and 2.6%(d = 16), respectively.

Fig. 5: Discounted cumulative reward and number of detected objects as the environment size (m) increases and as the of number of
objects (n) increases. Exhaustive search performs well in small-scale environments (4 and 8) where exploration strategy is not taken
advantage of. In large environments, our method MR-POUCT performs better than the baselines in most cases. The error bars are
95% confidence intervals. The level of statistical significance is shown, comparing MR-POUCT against POUCT, Options+POUCT, and
Exhaustive, respectively, indicated by ns (p > 0.05), * (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 0.001), **** (p ≤ 0.0001).

Fig. 6: Example action sequence produced by the proposed approach. The mobile robot first navigates in front of a portable table (1-2). It
then takes a LOOK action to observe the space in front (3), and no target is observed since the torso is too high. The robot then decides
to lower its torso (4), takes another LOOK action in the same direction, and then FIND to mark the object as found (5). This sequence of
actions demonstrate that our algorithm can produce efficient search strategies in real world scenarios.

of (16, 2, 10) is used to conduct this experiment. Results in

Figure 7 show that MR-POUCT is consistently better in all

parameter settings. We observe that β has almost no impact

to any algorithm’s performance as long as β < 1, whereas

decreasing α changes the agent behavior such that it must

decide to LOOK multiple times before being certain.

B. Demonstration on a Torso-Actuated Mobile Robot

We demonstrate that our approach is scalable to real

world settings by implementing the 3D-MOS problem as

well as MR-POUCT for a mobile robot setting. We use

the Kinova MOVO Mobile Manipulator robot, which has an

actuated torso with an extension range between around 0.05m

and 0.5m, which facilitates a 3D action space. The robot

operates in a lab environment, which is decomposed into

two search regions G1 and G2 of size roughly 10m2× 2m

(Figure. 6), each with a semantic label (“shelf-area” for G1

and “whiteboard-area” for G2). The robot is tasked to look

for nG1
and nG2

objects in each search region sequentially,

where objects are represented by paper AR tags that could be

in clutter or not detectable at an angle. The robot instantiates

an instance of the 3D-MOS problem once it navigates to a

search region. In this 3D-MOS implementation, the MOVE

actions are implemented based on a topological graph on

top of a metric occupancy grid map. The neighbors of a

Fig. 7: Discounted cumulative reward with 95% confidence interval
as the sensing uncertainty increases, aggregating over the β settings.

graph node form the motion action space when the robot is

at that node. The robot can take LOOK action in 4 cardinal

directions in place and receive volumetric observations; A

volumetric observation is a result of downsampling and

thresholding points in the corresponding point cloud. The

robot was able to find 3 out of 6 total objects in the two

search regions in around 15 minutes. One sequence of actions

(Figure 6) shows that the robot decides to lower its torso in

order to LOOK and FIND an object.4 A failure mode is that

the object may not be covered by any viewpoint and thus not

detected; this can be improved with a denser topological map,

or by considering destinations of MOVE actions sampled

from the continuous search region.

VII. CONCLUSION

We present a POMDP formulation of multi-object search

in 3D with volumetric observation space and solve it with

a novel multi-resolution planning algorithm. Our evaluation

demonstrates that such challenging POMDPs can be solved

online efficiently and scalably with practicality for a real

robot by extending existing general POMDP solvers with

domain-specific structure and belief representation.

One limitation of the presented work is that the assumption

of object independence, though beneficial computationally,

may discard useful object dependence information in some

cases. Optimal search for correlated objects becomes impor-

tant. In addition, we do not explicitly reason over object

geometry in the observation model. Considering belief over

geometric appearances is a challenging future direction.

Finally, incorporating a heuristic rollout policy may be a

promising direction for more realistic object search problems

while sacrificing optimality.

ACKNOWLEDGEMENTS

The authors thank Selena Ling for help with the simulator. This

work was supported by the National Science Foundation under grant

number IIS1652561, ONR under grant number N00014-17-1-2699,

the US Army under grant number W911NF1920145, Echo Labs,

STRAC Institute, and Hyundai.

REFERENCES

[1] T. Kollar and N. Roy, “Utilizing object-object and object-scene context
when planning to find things,” in IEEE International Conference on

Robotics and Automation. IEEE, 2009, pp. 2168–2173.

4Video footage with visualization of volumetric observations and octree
belief update is available at https://zkytony.github.io/3D-MOS/.

[2] A. Aydemir, A. Pronobis, M. Göbelbecker, and P. Jensfelt, “Active
visual object search in unknown environments using uncertain seman-
tics,” IEEE Transactions on Robotics (T-RO), vol. 29, no. 4, pp. 986–
1002, Aug. 2013.

[3] Y. Xiao, S. Katt, A. ten Pas, S. Chen, and C. Amato, “Online
planning for target object search in clutter under partial observability,”
in Proceedings of the International Conference on Robotics and

Automation, 2019.
[4] N. Atanasov, B. Sankaran, J. L. Ny, G. Pappas, and K. Daniilidis,

“Nonmyopic view planning for active object classification and pose
estimation,” IEEE Trans. on Robotics (TRO), 2014.

[5] M. Danielczuk, A. Kurenkov, A. Balakrishna, M. Matl, D. Wang,
R. Martı́n-Martı́n, A. Garg, S. Savarese, and K. Goldberg, “Mechanical
search: Multi-step retrieval of a target object occluded by clutter,” in
2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 1614–1621.

[6] A. Wandzel, Y. Oh, M. Fishman, N. Kumar, and S. Tellex, “Multi-
Object Search using Object-Oriented POMDPs,” in 2019 International

Conference on Robotics and Automation (ICRA). IEEE, 2019.
[7] J. K. Li, D. Hsu, and W. S. Lee, “Act to see and see to act: POMDP

planning for objects search in clutter,” in 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2016.
[8] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,”

in Advances in neural information processing systems, 2010.
[9] Z. N. Sunberg and M. J. Kochenderfer, “Online algorithms for

POMDPs with continuous state, action, and observation spaces,” in
Twenty-Eighth International Conference on Automated Planning and

Scheduling, 2018.
[10] N. P. Garg, D. Hsu, and W. S. Lee, “DESPOT-α: Online POMDP

planning with large state and observation spaces,” in Robotics: Science

and Systems, 2019.
[11] L. Li, T. J. Walsh, and M. L. Littman, “Towards a unified theory of

state abstraction for MDPs.” in ISAIM, 2006.
[12] A. Bai, S. Srivastava, and S. J. Russell, “Markovian state and action

abstractions for MDPs via hierarchical MCTS.” in IJCAI, 2016.
[13] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and

acting in partially observable stochastic domains,” Artificial intelli-

gence, vol. 101, no. 1-2, pp. 99–134, 1998.
[14] C. Diuk, A. Cohen, and M. L. Littman, “An object-oriented represen-

tation for efficient reinforcement learning,” in Proceedings of the 25th

international conference on Machine learning, 2008, pp. 240–247.
[15] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa, “Online planning

algorithms for POMDPs,” Journal of Artificial Intelligence Research,
vol. 32, pp. 663–704, 2008.

[16] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP
planning with regularization,” in Advances in neural information

processing systems, 2013, pp. 1772–1780.
[17] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”

in European conference on machine learning. Springer, 2006.
[18] L. E. Wixson and D. H. Ballard, “Using intermediate objects to

improve the efficiency of visual search,” International Journal of

Computer Vision, vol. 12, no. 2-3, pp. 209–230, 1994.
[19] C. Wang, J. Cheng, J. Wang, X. Li, and M. Q.-H. Meng, “Efficient

object search with belief road map using mobile robot,” IEEE Robotics

and Automation Letters, vol. 3, no. 4, pp. 3081–3088, 2018.
[20] A. Sarmiento, R. Murrieta, and S. A. Hutchinson, “An efficient strategy

for rapidly finding an object in a polygonal world,” in Proceedings

2003 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS 2003)(Cat. No. 03CH37453), 2003.
[21] X. Nie, L. L. Wong, and L. P. Kaelbling, “Searching for physical

objects in partially known environments,” in 2016 IEEE International

Conference on Robotics and Automation (ICRA), 2016.
[22] M. R. Dogar, M. C. Koval, A. Tallavajhula, and S. S. Srinivasa, “Object

search by manipulation,” Autonomous Robots, 2014.
[23] L. L. Wong, L. P. Kaelbling, and T. Lozano-Pérez, “Manipulation-

based active search for occluded objects,” in 2013 IEEE International

Conference on Robotics and Automation. IEEE, 2013, pp. 2814–2819.
[24] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,

“Deepsdf: Learning continuous signed distance functions for shape
representation,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2019, pp. 165–174.
[25] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-

MDPs: A framework for temporal abstraction in reinforcement learn-
ing,” Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[26] A. Shapiro, “Monte Carlo sampling methods,” Handbooks in opera-

tions research and management science, vol. 10, pp. 353–425, 2003.

https://zkytony.github.io/3D-MOS/

	Introduction
	Background
	POMDPs and OO-POMDPs
	Related Work

	Multi-Object Search in 3D
	Observation Model

	Octree Belief Representation
	Belief Update
	Sampling

	Multi-Resolution Planning via Abstractions
	Abstract 3D-MOS
	Multi-Resolution Planning Algorithm

	Experiments
	Simulation Evaluation
	Demonstration on a Torso-Actuated Mobile Robot

	Conclusion

