
Plug in the Safety Chip: Enforcing Constraints for LLM-driven Robot
Agents

Ziyi Yang, Shreyas S. Raman, Ankit Shah†, and Stefanie Tellex
Department of Computer Science, Brown University, United States

Abstract— Recent advancements in large language models
(LLMs) have enabled a new research domain, LLM agents,
for solving robotics and planning tasks by leveraging the world
knowledge and general reasoning abilities of LLMs obtained
during pretraining. However, while considerable effort has
been made to teach the robot the “dos”, the “don’ts” received
relatively less attention. We argue that, for any practical usage,
it is as crucial to teach the robot the “don’ts”: conveying explicit
instructions about prohibited actions, assessing the robot’s
comprehension of these restrictions, and, most importantly,
ensuring compliance. Moreover, verifiable safe operation is
essential for deployments that satisfy worldwide standards such
as ISO 61508, which defines standards for safely deploying
robots in industrial factory environments worldwide. Aiming
at deploying the LLM agents in a collaborative environment,
we propose a queryable safety constraint module based on
linear temporal logic (LTL) that simultaneously enables nat-
ural language (NL) to temporal constraints encoding, safety
violation reasoning and explaining, and unsafe action pruning.
To demonstrate the effectiveness of our system, we conducted
experiments in VirtualHome environment and on a real robot.
The experimental results show that our system strictly adheres
to the safety constraints and scales well with complex safety
constraints, highlighting its potential for practical utility.

I. INTRODUCTION

Recently, Large Language Models (LLMs) have enabled
LLM-based autonomous agents, or more recently termed
LLM agents [1], to emerge as a promising approach for
various applications [2], including planning, logical reason-
ing, as well as robotic tasks. However, with the increasing
desire to deploy these agents in daily settings for robotic
tasks, ensuring safety has become an inevitable concern,
particularly in situations where safety holds more signifi-
cance than the assigned tasks themselves. Safety concerns
are particularly important in industrial or factory settings,
where strict safety standards such as ISO 61508 [3] must be
met and maintained for automation systems to be deployed.
In this work, inspired by the categorization of Gu et al. [4],
we consider an LLM agent to be safe if it acts, reasons, and
generalizes obeying human desires and never reaches unsafe
states. Consider a scenario in which a physically embodied
robot agent is being deployed across various environments
for different roles, such as housekeeping for the elderly in
a nursing home or drug delivery for patients in a hospital.
While current planning and control mechanisms are mostly
interested in the robot’s capabilities, there are vital concerns
underlying safety issues in these specific domains. To answer

Code and appendix are available at https://yzylmc.github.io/safety-chip/
† Author was at Brown University when the work was done.

their question, “is this robot safe?” an ideal solution would
be a “safety chip” that can be plugged into existing robot
agents: this chip would empower the robot agent with the
skills to comprehend customized safety instructions per user
requests, convey safety specifications in its belief through
NL, and adhere to established safety standards. Still, three
major obstacles exist on the path toward this “safety chip”
for LLM-based robot agents:

• The inherently probabilistic nature of LLM agents hin-
ders their ability to consistently adhere to safety stan-
dards. This problem becomes exacerbated when goal
specifications are specified by untrained users at runtime
in natural language, or conflict with safety constraints.

• LLMs struggle to scale up as the complexity of con-
straints increases, which can also distract an LLM agent
from completing the original task.

• Currently, LLM agents rely on external modules such
as affordance model for grounded decision-making. De-
spite their high in-domain performance, such pretrained
modules are likely to have limited ability to generalize
to new domains or be customized to human preference.

To overcome the aforementioned challenges, our work
introduces a hybrid system where safety constraints are
represented in terms of a formal language, Linear Temporal
Logic (LTL), which can be verified to be correct. We map
between English instructions describing the safety constraints
and LTL constraints, which are then verified by experts,
relying on the fact that verifying LTL expressions is easier
and more reliable than writing them from scratch [5]. This
approach provides a pathway where the expression of the
safety constraints could in principal meet ISO 61508 stan-
dards [3] although actually meeting those standards is beyond
the scope of this work. Our overall approach can operate with
any existing language understanding framework regardless
of its technical underpinnings to provide safety guarantees,
as demonstrated in Figure 1. In addition to this “black box”
safety guarantee, our approach, when combined with an LLM
framework, can use reprompting to find new plans to achieve
task success without violating safety constraints. The main
contributions of this work are:

• Proposed a safety constraint module for customizable
constraints and integrated the proposed module into an
existing LLM agent framework.

• A fully prompting-based approach that supports pred-
icate syntax for translating NL to LTL and explaining
violation of LTL specification in NL.

2024 IEEE International Conference on Robotics and Automation (ICRA)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 14435

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(I

C
R

A
) |

 9
79

-8
-3

50
3-

84
57

-4
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

R
A

57
14

7.
20

24
.1

06
11

44
7

Authorized licensed use limited to: Brown University. Downloaded on September 17,2024 at 21:39:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Demonstration of safety chip’s functionality of translating NL to LTL formulas, monitoring the agent’s decision-
making process, and reprompting with reason of violation for re-planning.

• A formal method-based action pruning and feedback for
active re-planning for LLM agents.

• Deployed the system in an embodied environment and
on real robot platforms for baseline comparisons.

II. RELATED WORKS

A. LTL for Safety in Robotics

Linear temporal logic (LTL) [6] has found utility in
expressing temporal task specification for various planning
and learning tasks [7, 8, 9, 10]. Its application for safety
purposes arises from its expressivity and unambiguous se-
mantics. Runtime verification and monitoring for pre-defined
safety constraints specified as temporal logic formulas has
been studied extensively [11, 12, 13, 14, 15], and runtime
monitoring along with specification elicitation was recog-
nized as an important challenge in formalizing human-robot
interaction by Kress-Gazit et al. [16]. Our approach to safety
violation identification and constraint enforcement is inspired
by runtime monitoring frameworks reliant on temporal logic
specifications. Mao et al. [17] demonstrated using a variant
of LTL for safety in programmable logic controllers (PLCs)
commonly used for robotic control in a way consistent with
ISO 61508, showing its potential for use in the context of
industrial robotic safety.

In the broader context of Human-Robot Interaction (HRI),
the subject of safety has been investigated in-depth [18].
Here safety is viewed through a shared physical workspace,
we view safety through task planning as language-specified
constraints that have to be satisfied. To the best of our knowl-
edge, such task-level safety satisfaction is under-explored by
existing HRI research.

B. LLM Agents

LLMs exhibit substantial reasoning abilities and have been
deployed for planning in either embodied domain or on real
robots, and a line of works [19, 20, 21, 22, 23] have shown
interesting results on deploying the LLM agents for robotics.
Among them, Huang et al. [24] has touched on the safety
topic by providing a neural network-based safety module
in parallel with affordance and human preference modules
together as scoring functions, and Singh et al. [25], Liang

et al. [26] proposed the use of python code to express
robot plans. Recent works [27, 28] turn to Planning Domain
Definition Language (PDDL) for more accurate reasoning
and solving longer-horizon planning problems, while a big
assumption they made is that PDDL’s syntax is sufficiently
expressive for various NL instructions.

Our method attempts to combine the strength of both
paradigms by plugging the proposed safety module into
an existing LLM agent that utilizes natural language as an
interface. We hope to adapt the generality and expressiveness
of natural language and the rigorousness of formal language.

C. Translation between NL and LTL

The attempts to translate NL to LTL range from traditional
RNN model [29, 30] to the recent LLM-based works [31,
32, 33]. However, a shared challenge in these studies is the
limited availability of training data. While LLMs show great
improvement in translation, their performance deteriorates
with increased complexity, posing difficulties in generalizing
to out-of-distribution formulas.

LTL to NL works such as Cherukuri et al. [34] are still in
an early stage, likely due to the challenge of learning repre-
sentations of high-level abstractions of LTL and automatons.
Our approach tackles the problem by providing state infor-
mation as a knowledge representation of the automaton. We
believe such backward translation could serve as a valuable
interface between humans and LTL-based robot systems.

III. METHOD

A. Problem Definition

Our aim is to create a language understanding system
capable of meeting strict safety standards that might be
applied in an industrial setting. We assume access to an
existing language understanding system, such as an LLM
agent, that maps between language and robot action using
any mechanism, but that system has no constraints on using
a particular formal representation or safety guarantees. We
additionally assume access to a human designer who can ex-
press safety constraints in English, and has the capability to
verify those constraints once expressed in a formal language.

14436

Authorized licensed use limited to: Brown University. Downloaded on September 17,2024 at 21:39:14 UTC from IEEE Xplore. Restrictions apply.

B. Overview

Our proposed approach is to create a “safety chip” that
can take a language understanding system that does not
have safety guarantees and provide a framework that can
provide verifiable guarantees that safety constraints will not
be violated. Moreover, we provide a reprompting strategy
to enable LLM-based agents in particular, to plan to avoid
violating the safety constraints. Our “safety chip” consists of
a human-agent team. The human specifies safety constraints
in English. The robot then maps those constraints to a formal
representation. The representation is then verified by the
human for correctness. Once correctness has been verified,
we enforce these constraints on the existing LLM Agent.
Specifically, for an existing LLM agent making decisions
based on in-context knowledge lagent , we enforce a series of
constraints in natural language {ci} concerning safety aspects
by encoding each of them into LTL formulas {ϕi} and com-
posing them together into one single formula ϕϕϕ =

∧
∞
i=0 ϕi,

which is then stored as a automaton, A. To monitor the LLM
agent executing a high-level task, which ought to be decom-
posed by the agent into a set of subtasks or actions {ti}, we
mask unsafe action ti at time step i by progressing its partial
trajectory Ti = {t0, t1, ..., ti} with A, and generate a natural
language query Q regarding the constraint violation induced
by the unsafe action. Responding to the safety constraint
query, our query system generates an explanation lA from
P(lA|Q,c1:i,Ti). To regenerate a safe action t ′i , we prompt
the LLM agent again with the explanation lA to modify its
distribution from P(t ′i |lagent ,Ti−1) to P(t ′i |lagent ,Ti−1, lA).

As Figure 2 shows, our system consists of a translator sys-
tem for NL to LTL translation, a query system for explaining
safety violations, and a constraint monitor system for vali-
dating and pruning actions generated by the LLM agent. The
automaton serves as the central part of the safety constraints
module: it represents the safety constraints encoded from the
LTL formula in a validatable form, reasons the violation of
constraints with state changes of propositions, and validates
the agent’s proposed action by progressing the proposition-
level trajectory. In addition, the output of the query system
is also used to assist the agent in performing re-planning.

C. Identifying Safety Constraints

We propose a two-phase approach for identifying and
verifying safety constraints. First, we asked the human de-
signer to specify the constraints {ci} using natural language.
We automatically map the language to LTL formulas {ϕi}.
Then we ask them to verify the formula is correct. We
adopted the modular framework of Lang2LTL [33] as NL to
domain-specific LTL formula translator using a predefined
vocabulary. This involves extracting referring expressions,
grounding referring expressions to propositions within the
vocabulary, translating lifted utterances to formulas, and fi-
nally producing grounded formulas by replacing placeholders
with grounded propositions (see Figure 3). The noteworthy
distinction is that our translation module relies solely on
in-context learning and necessitates no fine-tuning due to
the compositionality nature of our approach: the safety

constraints are assumed to be provided as a series of basic
segments. This enables separate translation and assembly
into a single LTL formula ϕϕϕ with logical operators, which
is usually logical AND (&) since the constraints must be
satisfied simultaneously. Besides, we also have support for
predicates that can essentially enable the translation system
to go beyond the navigation domain.

For verifying the formula is correct, we rely on the human
having knowledge of the specific formal language being
used. This is required in order to meet the strict safety
standards specified by ISO 61508 [3]. Greenman et al. [5]
show that even for experts it is easier to verify a formula than
it is to write a new formula from scratch. Furthermore, in
our future work, we plan to explore integrated dialog systems
that can enable untrained users to specify safety constraints
using language and question-asking dialog to meet very high
levels of certainty that they are correctly understood.

D. Enforcing Safety Constraints

Pruning unsafe actions performed by the constraint mon-
itor module constitutes the core functionality of the safety
chip for enforcing safety constraints. For a sequence of
actions, we keep tracking the truth value of each proposition
at and between each action, and we determine the validity of
the action sequence by progressing it through an automaton
A: we consider a trajectory, T , to be valid if all state changes
are valid and the final state of the sequence has a path to the
accepting states of the automaton, or if the final state falls
in the accepting states, if the agent terminates the execution
as its last action.

Our approach for runtime monitoring with LTL is compati-
ble with any language understanding system, regardless of its
internal structure capabilities of the language understanding
system, the safety chip will simply stop the robot’s execution
if it detects it is about to move to an unsafe state. On the
other extreme, if the internal system also uses LTL, we can
follow the approach of Raman et al. [35] and give the user
detailed feedback about what constraints are violated as soon
as the runtime language has been interpreted, for example
by a system such as Lang2LTL [33]. However, LTL lacks
expressivity as compared to natural language, and systems
may wish to incorporate the power of large language models
without being limited by the expressivity of LTL. For such
hybrid systems, we present a strategy to reprompt the LLM
using information from the safety chip, described in the
following two sections.

E. Reprompting with Large Language Models

Since we keep tracking the truth values of each proposition
in the LTL formula as the LLM agent is planning and execut-
ing, state transition in the automaton can also be monitored.
Thus, assuming we have perfect truth value functions and
transition model, any violation of the safety constraints can
be detected in advance, and we can mask out the unsafe
action ti and ask the LLM agent to re-generate the plan from
the last step. However, masking alone doesn’t provide any
information to the LLM agent, causing the agent to likely

14437

Authorized licensed use limited to: Brown University. Downloaded on September 17,2024 at 21:39:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: System Diagram. The safety chip infers specification of constraints from
NL and stores it as automaton. The automaton is then used for monitoring the
decision-making process of an LLM agent, and responses to agent queries can
be generated accordingly to help the LLM agent with reprompting.

Fig. 3: NL to LTL translation ex-
ample. Referring expressions are ex-
tracted and grounded into predefined
propositions, and lifted NL utterances
are translated into a lifted formula,
then combined to produce the final
result.

choose an action within the same distribution of the masked
unsafe action since its distribution remains unchanged. In
order to shift the distribution towards the ground truth or safe
actions, we want to provide information through the context
of the prompt, so that the agent can make a decision based on
the updated context, and we term this process reprompting.

An example implementation of reprompting in the
decision-making loop is shown as follows (text in grey is the
prefix in the prompt, black is generated by the LLM agent,
and green is explanation lA generated for reprompting. task
specification and examples are removed for simplicity):

Go to toilet
Description: Travel through the house and locate the
bathroom, and proceed to the toilet.
0. walk to bathroom
Error: The user is trying to enter the bathroom
before entering the living room, which violates the
constraint “you have to enter living room before
bathroom”. The correct plan would be:
0. walk to living room
Error: The action “walk to livingroom” violates the
constraint “you have to enter bedroom before going
into living room”. According to the state change, the
user is currently in the kitchen and has not entered
the bedroom yet. The correct plan would be:
0. walk to bedroom
1. walk to living room
2. walk to bathroom
3. walk to toilet
4. DONE

F. Queryable Safety Constraints

The query system serves the purpose of assisting LLM
agents in effective reprompting. Inspired by [36, 37], in
addition to masking out unsafe actions, we utilize the query
system to provide closed-loop feedback to the agent regard-
ing reasons for violation. This approach prompts the query
system to reason over explanations for validation results and
feeds the output to the LLM agent, introducing an inductive
bias from the query system. Similar to the translation system,
the query system relies entirely on prompting. As recent

research [38] shows, LLMs are susceptible to hallucination
and generally unreliable for classification tasks, making them
unsuitable to be directly applied for validation detection in
our case. Fortunately, the automaton can provide action valid-
ity through trajectory progression, thereby reducing LLMs’
role to explanation. For that, we construct agent query: Agent
query Q is only sent to the query system when the LLM
agent violates given safety constraints in its next action.
After a violation is detected by the constraint monitor, safety
constraints in NL, valid actions and invalid actions, and their
corresponding truth value changes are provided in the prompt
together with task specifications, which explicitly instruct the
language model to explain the reason for the violation.

The output generated by the query system in response to
the agent query, lA, will be appended to the original prompt
in the form of error messages that the LLM agent uses for
decision-making. An example prompt for generating the first
error message in the prompt in the previous section could be
as follows (task specification and environment information
omitted for simplicity):

Constraints: [“you have to enter living room before
bathroom”, “you have to enter bedroom before going
into living room”]
Invalid action: walk to bathroom
State change:
Safe: !agent at(bedroom) & !agent at(bathroom) &
!agent at(livingroom)
Violated: !agent at(bedroom) & agent at(bathroom)
& !agent at(livingroom)
Reason of violation:

IV. EXPERIMENTS

The aim of our evaluation is to test the hypothesis that
our safety chip approach can reduce the frequency of safety
constraint violations without decreasing the frequency of task
completion relative to the base models without a safety chip.
Experiments are conducted in VirtualHome environment
and on the real robot (see section V). We aim to draw
comparisons between the proposed method and baseline
method where both goal specifications and constraints are
fed together to LLM agents.

14438

Authorized licensed use limited to: Brown University. Downloaded on September 17,2024 at 21:39:14 UTC from IEEE Xplore. Restrictions apply.

A. VirtualHome Environment & Tasks

VirtualHome [39] is a multi-agent platform that supports
simulated household tasks in multiple embodied environ-
ments. We adopted 20 household tasks from two environ-
ments, e.g., “Put salmon into the fridge,” and five satisfiable
constraints for each task, e.g., “You must close the fridge if
you have ever opened it.” All constraints fall in avoidance
and trigger patterns formulated by Menghi et al. [40]. Task
difficulty is controlled as each task is accompanied by an
in-context example that has the exact ground truth action
sequence with only the goal specification paraphrased, and
all tasks are ensured to be achievable under the constraints,
to draw a fair comparison on the ability to reason about
safety constraints between different systems. During the
experiment, we access the simulator for information such
as locations and states of objects for truth values.

B. LLM Agents

We proposed the following three LLM agents:
Base Model is the foundation of the other two agents.
We develop the model based on SayCan [41] and LLM-
Planner [27]: in the prompt, we provide environmental in-
formation and available actions. During inference, the agent
generates one action at a time, grounds it into available
actions, and appends it to the prompt for the subsequent
generation loop. Though the base model is unaware of any
safety constraint, we evaluate its performance as a reference.
Base Model with NL Constraints (NL Constraints) is
instructed through task specification to complete the given
task while obeying the safety constraints. It takes as input
the safety constraints together with goal specifications. All
reasoning over safety constraints and planning happens in-
ternally within the LLM.
Base Model with Safety Chip (Safety Chip) is the system
we developed by plugging the safety chip in the base model.
While the base model is unaware of the safety constraints
at the beginning, it is instructed to be vigilant for the error
messages regarding safety violations and ready to re-generate
the next action. At the same time, the safety chip keeps
tracking the states of the robot agent, pruning unsafe actions,
and conveying the information regarding violation through
agent query, as stated in Section III.

Throughout the experiment, GPT4 [42] (gpt-4-0613) is
used as the language model for all prompting tasks.

C. Experimental Setup

We conducted two sets of experiments, Four Room and
Mobile Manipulation, for examining the ability of LLM
agents to reason constraints and evaluating the performance
under realistic and everyday constraints. For both sets of
experiments, we applied an increasing number of constraints
from one to five, and we evaluated the performance based
on success rate, if the end state matches the goal state and
is executable by the simulator, and safety rate, if ever the
agent violates the safety constraints and enters an invalid
state specified by the automaton, i.e., a safe execution could
be unsuccessful, and vice versa.

For NL constraints and LTL formulas, we use the trans-
lation system of safety chip to convert safety constraints
specified by LTL experts in natural language to LTL for-
mulas, and then the experts are asked to verify the generated
LTL formulas. In this experiment, the experts are also asked
to provide accurate NL constraints based on the verified
LTL formulas in addition to the original ones for the NL
Constraints baseline to assess the effect of ambiguity in NL
for a comprehensive evaluation. To be more specific on the
two sets of experiments:
Four Room is proposed to fairly evaluate the reason-
ing ability over safety constraints of various systems,
where all NL constraints are in similar formats, e.g.,
“Don’t go to kitchen before bathroom,” and only consist
of a navigational predicate, {agent at()}, and rooms in
{Kitchen,Bathroom,Bedroom,Livingroom} as propositions.
Intuitively, we expect the LLM agents to focus more on rea-
soning over constraints when provided with straightforward
NL constraints, rather than on language understanding.
Mobile Manipulation tests the system in more realistic
scenarios, where we extend the constraints to mobile ma-
nipulation domain by incorporating six more predicates,
{is switchedon(), is open(), is grabbed(), is touched(),
is on(), is in()}, representing the status and relationships
of objects, and accepting both objects and locations as
arguments. The NL constraints are generally more diverse
than in the Four Room experiment, and we also provide a list
of available objects, 105 objects per environment on average,
in the prompt for the agent to interact with.

Fig. 4: Average Safety Rate by Number of Constraints for
VirtualHome
D. Results

As Table I and Figure 4 show, Safety Chip could achieve
100% safety rate with expert-verified LTL formulas in
both experiments, which significantly outperformed the other
baselines, especially under a larger number of constraints.
Besides, even without expert verification, there is still a large
margin over the other baselines, though the success rate
is affected because of the mistranslated safety constraints.
On the contrary, the NL Constraints baseline struggles to
adhere to the safety constraint even with expert-provided NL
constraints. Besides, we observed that the success rate of
Base Model is lower than the other two agents that have
access to the safety constraints, which might indicate the
safety constraints could contain useful information that can
help decision-making in return.

14439

Authorized licensed use limited to: Brown University. Downloaded on September 17,2024 at 21:39:14 UTC from IEEE Xplore. Restrictions apply.

TABLE I. Average success rate and safety rate of VirtualHome Experiments

Four Room Mobile Manipulation

Success Rate Safety Rate Success Rate Safety Rate

Base Model 90% 38% 94% 30%
NL Constraints 100% 56% 100% 56%
NL Constraints∗ 100% 54% 96% 62%
Safety Chip 76% 84% 88% 94%
Safety Chip∗ 98% 100% 98% 100%
* expert-verified

TABLE II. Average success rate and safety rate of
physical robot

Success Rate Safety Rate

Code as Policies 53% 55%
NL Constraints 98% 34%
Safety Chip 98% 100%

V. ROBOT DEMO

To assess the potential of the proposed system for han-
dling complex safety constraints in practice, we doubled the
maximum number of constraints applied to each task and
deployed the system on a Spot [43] robot together with two
baselines to draw comparisons.

A. Experimental Setup

We build an indoor environment consisting of 23 objects
and landmarks, and the environmental information is stored
in the scanned graph from the Spot robot. We define two
mobile manipulation tasks with ten safety constraints cover-
ing six patterns in avoidance and trigger pattern defined by
Menghi et al. [40] per task, and we progressively increase
the number of constraints applied to the task. All safety
constraints are generated by LTL experts through natural
language, and we assume no mistranslation in LTL formulas
verified by the experts and no mechanical failure in the
experiment, since the goal is to assess the agent’s ability
to plan under complex constraints.

For baseline comparisons, we adopt the NL Constraints
and the Safety Chip agents which are the same as the Virtu-
alHome experiments, and we additionally implement Code as
Polices [26] for comparison as a code generation-based LLM
agent. We provide predefined mobile manipulation skills,
access to object states, and access to the planner of the robot
to all baselines, and we build a precondition checker for
NL Constraints and Safety Chip to infer physical limitations
that indicate available actions at each state, e.g., “pick up
mail” is unavailable when the robot agent is not around the
mail, while Code as Policies is inherently hard to incorporate
closed-loop feedback modules for reprompting due to its
code format. During the experiment, each task is run twice,
and the temperature of the LLM is set to zero to minimize
the effect of stochasticity of the LLM.

B. Results

As Table II shows, with the assistance of LTL experts, we
achieve 100% safety rate without impacting the success rate.
When the number of constraints surpasses five, we observe
a drastic decrease in the safety rate for the two baselines:
NL Constraints achieves 0%, and Code as Policies achieves
40%. Compared with their performance when constraints
are fewer than five, where NL Constraints achieves 75%
and Code as Policies achieves 70%, we can observe the
pattern that the two LLM agents struggle to scale up as
the complexity of constraints increases. In addition, three

task abortion tests with safety constraints contradicting the
task itself are also conducted to learn the agent’s behavior
under self-contradicted commands. As a result, we find NL
Constraints and Code as Policies still try to accomplish the
task even when instructed to obey the safety constraints,
which leads to safety violations, while our system can
catch the contradicting constraints and abort properly without
visiting any unsafe state.

VI. CONCLUSION

To address the safety concern of deploying LLM agents
in practice, we introduced the safety chip that supports
customizable constraints by simultaneously encoding NL
constraints, conveying the encoded safety constraints to LLM
agents, and monitoring and assisting the decision-making
process of an LLM agent. From the results, we can draw
three conclusions:
• Safety constraints are challenging and distracting for

LLM agents to handle without external help, as the
complexity of constraints increases.

• Verifiable formal language such as LTL is generally
more reliable and interpretable than latent representa-
tions in fully end-to-end approaches, particularly con-
cerning the safety aspects of robot agents.

• Ablating things, such as safety constraints, from differ-
ent abstraction levels holds the potential to help LLM
agents concentrate on the main task and effectively
function as a “brain”.

Lastly, we emphasize the pressing need for more attention
to safety aspects from the LLM agents community, as these
considerations are indispensable for any practical utilization:
when safety becomes a critical issue, the reasoning skills of
LLMs or other neural network-based models alone cannot
guarantee to satisfy safety standards, and hence, we proposed
a potential solution based on formal verification. On a higher
level, the proposed “safety chip” also has the potential to
assist other frameworks beyond the LLM agent domain in
achieving safety standards, and we hope to provide a new
perspective on viewing and handling safety constraints for
various robotic tasks.

VII. ACKNOWLEDGEMENT

The authors would like to thank Eric Rosen and Kaiyu
Zheng for their thoughtful suggestions. This work is sup-
ported by the Air Force Office of Scientific Research under
award number FA9550-21-1-0214 and the Office of Naval
Research under award number N00014-22-1-2592.

14440

Authorized licensed use limited to: Brown University. Downloaded on September 17,2024 at 21:39:14 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] L. Weng, “Llm-powered autonomous agents,”
lilianweng.github.io, Jun 2023. [Online]. Available:
https://lilianweng.github.io/posts/2023-06-23-agent/

[2] L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang,
Z. Chen, J. Tang, X. Chen, Y. Lin, W. X. Zhao, Z. Wei,
and J.-R. Wen, “A survey on large language model
based autonomous agents,” 2023.

[3] International Organization for Standardiza-
tion/International Electrotechnical Commission, “Func-
tional safety of electrical/electronic/programmable
electronic safety-related systems - part 1: General
requirements,” 2010.

[4] S. Gu, L. Yang, Y. Du, G. Chen, F. Walter, J. Wang,
Y. Yang, and A. Knoll, “A review of safe reinforcement
learning: Methods, theory and applications,” 2023.

[5] B. Greenman, S. Saarinen, T. Nelson, and S. Krish-
namurthi, “Little tricky logic: Misconceptions in the
understanding of ltl,” The Art, Science, and Engineering
of Programming, vol. 7, 2023.

[6] A. Pnueli, “The temporal logic of programs,” in 18th
Annual Symposium on Foundations of Computer Sci-
ence (sfcs 1977). ieee, 1977, pp. 46–57.

[7] A. Shah, S. Li, and J. Shah, “Planning with uncertain
specifications (puns),” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 3414–3421, 2020.

[8] J. X. Liu, A. Shah, E. Rosen, G. Konidaris, and
S. Tellex, “Skill transfer for temporally-extended task
specifications,” arXiv preprint arXiv:2206.05096, 2022.

[9] A. Pacheck and H. Kress-Gazit, “Physically-feasible
repair of reactive, linear temporal logic-based, high-
level tasks,” 2022.

[10] H. Kress-Gazit, M. Lahijanian, and V. Raman,
“Synthesis for robots: Guarantees and feedback for
robot behavior,” Annu. Rev. Control. Robotics Auton.
Syst., vol. 1, pp. 211–236, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:65105626

[11] P. Thati and G. Roşu, “Monitoring algorithms for
metric temporal logic specifications,” Electronic Notes
in Theoretical Computer Science, vol. 113, pp. 145–
162, 2005.

[12] M. Foughali, S. Bensalem, J. Combaz, and F. In-
grand, “Runtime verification of timed properties in
autonomous robots,” in 2020 18th ACM-IEEE Interna-
tional Conference on Formal Methods and Models for
System Design (MEMOCODE). IEEE, 2020, pp. 1–12.

[13] T. Reinbacher, K. Y. Rozier, and J. Schumann,
“Temporal-logic based runtime observer pairs for sys-
tem health management of real-time systems,” in Tools
and Algorithms for the Construction and Analysis of
Systems: 20th International Conference, TACAS 2014.
Springer, 2014, pp. 357–372.

[14] H. Barringer, A. Goldberg, K. Havelund, and K. Sen,
“Rule-based runtime verification,” in Verification,
Model Checking, and Abstract Interpretation: 5th In-
ternational Conference, VMCAI 2004 Venice, Italy,

January 11-13, 2004 Proceedings 5. Springer, 2004,
pp. 44–57.

[15] P. Moosbrugger, K. Y. Rozier, and J. Schumann, “R2u2:
monitoring and diagnosis of security threats for un-
manned aerial systems,” Formal Methods in System
Design, vol. 51, pp. 31–61, 2017.

[16] H. Kress-Gazit, K. Eder, G. Hoffman, H. Admoni,
B. Argall, R. Ehlers, C. Heckman, N. Jansen, R. Knep-
per, J. Křetı́nskỳ et al., “Formalizing and guaranteeing
human-robot interaction,” Communications of the ACM,
vol. 64, no. 9, pp. 78–84, 2021.

[17] X. Mao, X. Li, Y. Huang, J. Shi, and Y. Zhang,
“Programmable logic controllers past linear temporal
logic for monitoring applications in industrial control
systems,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 7, pp. 4393–4405, 2022.

[18] P. A. Lasota, T. Fong, and J. A. Shah, “A
survey of methods for safe human-robot interaction,”
Foundations and Trends R© in Robotics, vol. 5,
no. 4, pp. 261–349, 2017. [Online]. Available:
http://dx.doi.org/10.1561/2300000052

[19] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes,
B. David, C. Finn, C. Fu, K. Gopalakrishnan, K. Haus-
man, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter,
A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey, S. Jesmonth,
N. J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-
H. Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor,
J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Ser-
manet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke,
F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng, “Do
as i can, not as i say: Grounding language in robotic
affordances,” 2022.

[20] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Flo-
rence, A. Zeng, J. Tompson, I. Mordatch, Y. Chebotar,
P. Sermanet, N. Brown, T. Jackson, L. Luu, S. Levine,
K. Hausman, and B. Ichter, “Inner monologue: Embod-
ied reasoning through planning with language models,”
2022.

[21] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch,
“Language models as zero-shot planners: Extracting
actionable knowledge for embodied agents,” 2022.

[22] B. Chen, F. Xia, B. Ichter, K. Rao, K. Gopalakrish-
nan, M. S. Ryoo, A. Stone, and D. Kappler, “Open-
vocabulary queryable scene representations for real
world planning,” 2022.

[23] D. Shah, B. Osinski, B. Ichter, and S. Levine, “Lm-
nav: Robotic navigation with large pre-trained models
of language, vision, and action,” 2022.

[24] W. Huang, F. Xia, D. Shah, D. Driess, A. Zeng, Y. Lu,
P. Florence, I. Mordatch, S. Levine, K. Hausman, and
B. Ichter, “Grounded decoding: Guiding text generation
with grounded models for robot control,” 2023.

[25] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu,
J. Tremblay, D. Fox, J. Thomason, and A. Garg, “Prog-
prompt: Generating situated robot task plans using large
language models,” arXiv preprint arXiv:2209.11302,
2022.

14441

Authorized licensed use limited to: Brown University. Downloaded on September 17,2024 at 21:39:14 UTC from IEEE Xplore. Restrictions apply.

[26] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman,
B. Ichter, P. Florence, and A. Zeng, “Code as policies:
Language model programs for embodied control,” in
arXiv preprint arXiv:2209.07753, 2022.

[27] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas,
and P. Stone, “Llm+p: Empowering large language
models with optimal planning proficiency,” 2023.

[28] Y. Xie, C. Yu, T. Zhu, J. Bai, Z. Gong, and H. Soh,
“Translating natural language to planning goals with
large-language models,” 2023.

[29] N. Gopalan, D. Arumugam, L. Wong, and S. Tellex,
“Sequence-to-Sequence Language Grounding of Non-
Markovian Task Specifications,” in Proceedings of
Robotics: Science and Systems, Pittsburgh, Pennsylva-
nia, 2018.

[30] R. Patel, E. Pavlick, and S. Tellex, “Grounding lan-
guage to non-markovian tasks with no supervision of
task specifications,” in Robotics: Science and Systems,
2020.

[31] Y. Chen, R. Gandhi, Y. Zhang, and C. Fan, “Nl2tl:
Transforming natural languages to temporal log-
ics using large language models,” arXiv preprint
arXiv:2305.07766, 2023.

[32] J. Pan, G. Chou, and D. Berenson, “Data-efficient
learning of natural language to linear temporal logic
translators for robot task specification,” arXiv preprint
arXiv:2303.08006, 2023.

[33] J. X. Liu, Z. Yang, I. Idrees, S. Liang, B. Schornstein,
S. Tellex, and A. Shah, “Lang2ltl: Translating natural
language commands to temporal robot task specifica-
tion,” 2023.

[34] H. Cherukuri, A. Ferrari, and P. Spoletini, “Towards ex-
plainable formal methods: From ltl to natural language
with neural machine translation,” in Requirements En-
gineering: Foundation for Software Quality, V. Gervasi
and A. Vogelsang, Eds. Cham: Springer International
Publishing, 2022, pp. 79–86.

[35] V. Raman, C. Lignos, C. Finucane, K. C. Lee, M. P.
Marcus, and H. Kress-Gazit, “Sorry dave, i’m afraid i
can’t do that: Explaining unachievable robot tasks using
natural language.” in Robotics: science and systems,
vol. 2, no. 1. Citeseer, 2013, pp. 2–1.

[36] S. S. Raman, V. Cohen, E. Rosen, I. Idrees,
D. Paulius, and S. Tellex, “Planning with large language
models via corrective re-prompting,” arXiv preprint
arXiv:2211.09935, 2022.

[37] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran,
K. Narasimhan, and Y. Cao, “React: Synergizing rea-
soning and acting in language models,” 2023.

[38] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu,
E. Ishii, Y. J. Bang, A. Madotto, and P. Fung, “Survey
of hallucination in natural language generation,” ACM
Computing Surveys, vol. 55, no. 12, pp. 1–38, mar
2023. [Online]. Available: https://doi.org/10.1145%
2F3571730

[39] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler,
and A. Torralba, “Virtualhome: Simulating household

activities via programs,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2018, pp. 8494–8502.

[40] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and
T. Berger, “Specification patterns for robotic missions,”
IEEE Transactions on Software Engineering, vol. 47,
no. 10, pp. 2208–2224, oct 2021.

[41] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes,
B. David, C. Finn, K. Gopalakrishnan, K. Hausman,
A. Herzog et al., “Do as i can, not as i say: Ground-
ing language in robotic affordances,” arXiv preprint
arXiv:2204.01691, 2022.

[42] OpenAI, “Gpt-4 technical report,” 2023.
[43] Boston Dynamics, “Spot - the agile mobile robot,”

https://www.bostondynamics.com/products/spot.

14442

Authorized licensed use limited to: Brown University. Downloaded on September 17,2024 at 21:39:14 UTC from IEEE Xplore. Restrictions apply.

