
Learning to Parse Natural Language to
Grounded Reward Functions with Weak Supervision

Edward C. Williams* and Nakul Gopalan* and Mina Rhee and Stefanie Tellex

Abstract— In order to intuitively and efficiently collaborate
with humans, robots must learn to complete tasks specified
using natural language. We represent natural language instruc-
tions as goal-state reward functions specified using lambda
calculus. Using reward functions as language representations
allows robots to plan efficiently in stochastic environments. To
map sentences to such reward functions, we learn a weighted
linear Combinatory Categorial Grammar (CCG) semantic
parser. The parser, including both parameters and the CCG
lexicon, is learned from a validation procedure that does not
require execution of a planner, annotating reward functions, or
labeling parse trees, unlike prior approaches. To learn a CCG
lexicon and parse weights, we use coarse lexical generation
and validation-driven perceptron weight updates using the
approach of Artzi and Zettlemoyer [4]. We present results on
the Cleanup World domain [18] to demonstrate the potential
of our approach. We report an F1 score of 0.82 on a collected
corpus of 23 tasks containing combinations of nested referential
expressions, comparators and object properties with 2037
corresponding sentences. Our goal-condition learning approach
enables an improvement of orders of magnitude in computation
time over a baseline that performs planning during learning,
while achieving comparable results. Further, we conduct an
experiment with just 6 labeled demonstrations to show the ease
of teaching a robot behaviors using our method. We show that
parsing models learned from small data sets can generalize to
commands not seen during training.

I. INTRODUCTION

Natural language provides an expressive and accessible
method for specifying goals to robotic agents. These com-
mands constitute a significant subset of useful behaviors that
a user can specify in collaborative scenarios. For example,
a user of a household robot can easily specify navigation
(e.g., “go to the TV room”) or manipulation (e.g., “place the
dishes in the sink”) goals in natural language without needing
to learn complex APIs or user interfaces. Such commands
describe a desired configuration of the world, and expect a
robotic agent to modify the environment accordingly. These
commands are easily modeled as goal conditions to be
satisfied by a planning agent.

In this paper, we represent these goal conditions as
lambda-calculus goal-based reward functions under the
Markov Decision Process (MDP) [7] formalism, which give
the agent positive reward for reaching the goal state. Planning
then aims to maximize the sum of rewards the agent receives
while attempting to reach the goal condition optimally. Plan-
ning in the MDP formalism is useful in the setting of robotics

Department of Computer Science, Brown University, Providence,
RI 02912, USA {edward c williams@, ngopalan@cs.,
mina rhee@, stefie10@cs.}brown.edu
* The first two authors contributed equally.

(a) State at task initiation (b) State at task completion

Fig. 1: The figure shows an example pair of states of the
Turtlebot before and after it performed the command to “go
to the largest room.” The robot moves from the red room to
the large green room, marked using the colored blocks. The
robot plans the trajectory using a reward function generated
from the natural language command on the fly using a CCG
parser we learned using weak supervision from language.

as it allows for a natural method to deal with stochasticity.
The use of reward functions as an intermediate representation
allows a separation between the language interpretation and
planning components.

We learn a mapping from natural language into the space
of lambda-calculus expressions using a semantic parser. This
mapping is modeled as a weighted linear Combinatory Cat-
egorial Grammar (CCG) [9, 24] parser, which pairs words
in a lexicon with lambda-calculus representations of their
meaning. More importantly, a CCG provides a mechanism
for composing lambda-calculus expressions representing sen-
tences from subexpressions representing their constituent
words and phrases. Our lambda-calculus representation in-
terfaces with Object Oriented MDP (OO-MDP) [10] states
while enabling the use of complex commands involving
comparators, object attributes, relationships between objects,
and nested referring expressions.

Existing approaches for learning to map sentences to
reward functions require fully supervised data, including
complete reward function specifications paired with natural
language commands [18, 6]. This requires manual annota-
tion of natural language datasets, and the resulting learned
models have a limited ability to generalize to unseen tasks.
As well, existing CCG-based approaches that map natural
language to trajectory specifications [4, 5] require executing
planning during learning to validate proposed logical expres-
sions, which is computationally expensive and does not allow
planning in Markov Decision Processes. Our method allows
for efficient learning using only pre- and post-condition states
as annotation, instead of complete reward functions or their
derivations, which are used to validate reward functions



without executing a planner.
We believe that ours is the first approach to produce com-

positional reward functions using a CCG semantic parser, and
then use the reward function for the purposes of planning on
an agent in an MDP. We trained and evaluated our model
on data collected from Amazon Mechanical Turk (Figure 2)
on simulated mobile manipulation tasks in Cleanup Domain
[18]. Our results demonstrate effective learning of a weakly
supervised parser with an F1 score of 0.82 on a corpus
of 23 behaviors. We compare against baselines that use
planning to validate parses during learning, and show that
our method achieves comparable performance with orders of
magnitude improvement in computation time during learn-
ing. Moreover, we present a robot demonstration of our
method in a Turtlebot mobile-manipulation task using 6
weakly annotated demonstrations to learn two behaviors, and
also show generalization to unseen tasks.

II. RELATED WORK

Zettlemoyer and Collins [27] presented a supervised
method to learn CCG parsers given natural language anno-
tated with lambda-calculus logical forms. Krishnamurthy and
Mitchell [15] demonstrated a weakly supervised method for
learning CCG semantic parsers given a syntactically parsed
sentence and a knowledge base. Artzi and Zettlemoyer [4]
extended this idea of weak supervision to planning in a
navigation task by mapping natural language to a logical
form specifying a trajectory. The trajectories produced by the
CCG parser while learning were compared to demonstration
trajectories for a validation signal. However, these plans were
not generated on an MDP, and the semantic representations
of language directly represented sequences of actions rather
than goal conditions. Planning on a physical robot requires
modeling stochasticity, which is modeled well using MDPs,
to allow agents to recover from failure. As we are only
interested in goal based commands, it is not necessary to
validate using trajectory information during learning. Instead,
we can learn from pre- and post- condition states provided
as demonstrations for a natural language command.

Tellex et al. [25] described a method using syntactic parse
trees of language to create probabilistic graphical models
(PGMs) that can create trajectories that match the natural
language phrase. This process of generating trajectories is
expensive, hence Howard et al. [13] used the PGMs to gen-
erate constraints that be used to plan, separating the language
interpretation and planning components of the system. Our
method also produces constraints on the end state of a robot’s
trajectory. While Howard et al. [13] assumes access to a
pre-trained syntactic, our method needs pre-defined logical
expressions to test attributes of objects. A related line of
research (MacGlashan et al. [18], Arumugam et al. [6]) looks
to translate natural language to sets of reward functions so
that agents can perform planning within an MDP. These
methods model the process of mapping natural language to
reward functions as sequence to sequence translations [18]
and multi-class classification [6] using a relatively simple
semantic representation and without the ability to learn and

interpret nested referential expressions. We instead represent
the task as semantic parsing with a highly compositional
semantic representation. Portions of this paper appeared in
Williams et al. [26] describing an early attempt to parse
natural language to reward functions with weak supervision.

Inverse Reinforcement Learning (IRL) [20] is a method for
learning a reward function in an MDP using demonstration
trajectories and a feature representation of the state space.
In our work, we learn a compositional reward function
from pre-specified predicates, natural language, and pre-
and post- condition states provided as supervision. IRL
learns a richer class of reward functions than the goal-based
reward functions we learn in this work. However, our use
of natural language to learn compositional reward functions
allows for generalizability of the learned reward functions as
described in Section VII. Another series of approaches map
natural language directly to policies in an MDP, learned from
demonstrations provided at training time [19, 14]. However,
these methods have not been demonstrated to work with
small training corpora, which is enabled in our case by the
seed lexicon provided to our semantic parser.

III. TASK DOMAIN

Markov Decision Processes (MDPs) [7] model stochastic-
ity, which is an important factor when trying to plan or learn
with robots in the physical world. Hence, we represent our
robot manipulation and navigation domain as an MDP. An
MDP is described by a five-tuple (S,A, T , R, E). Here S
represents the environment’s state space; A represents the
agent’s action space; T (s, a, s′) is a probability distribution
defining the transition dynamics (i.e., the probability that a
transition to state s′ occurs when action a is taken in state
s); R(s, a, s′) represents the reward function returning the
numerical reward that the agent receives for transitioning
to state s′ with action a from state s; and E ⊂ S is a
set of terminal states that, once reached, prevent any future
action. The goal of planning in an MDP is to find a policy—a
mapping from states to actions—that maximizes the expected
future discounted reward. In such a domain, we can define
goal-state reward functions as functions that, for a given set
of terminal goal states G ⊂ E , produce the following output:

RG(s, a) =

{
1, if s ∈ G
0, otherwise

We define our set of tasks as those that can be executed
by planning over goal-state reward functions in the Cleanup
World object manipulation domain [18]. We specify this
MDP using Object Oriented MDPs (OO-MDP) [10], which
provides a factored representation of an MDP problem. The
factorization of the environment and actions is done using
objects present in the environment, which is convenient
as humans naturally describe world states with respect to
objects present in it. Cleanup Domain [18] is an MDP
environment generator with an agent, and different numbers
of rooms and objects. The object have types, such as “bas-
ket”, “chair”, and “block” and attributes, such as “color”



and “location”. The agent possesses location and orientation
attributes. Rooms have attributes of “color”, “location” and
“size”. In this work we use a three room configuration
of Cleanup world with changing attributes for rooms and
objects and the agent. The agent can take the actions of
north, south, east and west. We have previously shown the
stochastic nature of this domain, with doors that can lock
and unlock and objects that are lost by the agent [11].

IV. METHOD

To map natural language to grounded reward functions, we
define a compositional semantic representation that defines
sets of goal states from relationships between objects in
our OO-MDP domain. We then induce a weighted linear
CCG parser [9] mapping natural language into our semantic
representation, using pre- and post- condition states as super-
vision, rather than fully annotating language with semantics.
Our learning algorithm is derived from the validation-based
perceptron learner of Artzi and Zettlemoyer [4].

A. Semantic Representation and Execution

To bridge the gap between natural language and OO-MDP
reward functions, we define a lambda-calculus semantic
representation for language that defines a set of goal states
in the OO-MDP domain. Lambda calculus, a computational
formalism based on function application and variable bind-
ing, is well-explored as a semantic representation for natural
language [8, 27, 28, 4]. Its utility for natural language repre-
sentation comes from its expression of the compositionality
of natural language while providing an interface between
language and computation.

We make the assumption that natural language commands
to our agent define a configuration of the world that the
user would like the agent to produce, by re-arranging objects
in the world or moving to a different location, is reflected
in the nature of our representation - natural language is
represented as a proposition function over states in the MDP.
For instance, a complete lambda-calculus expression used as
a reward function for the task in Figure 2, “go to the chair”, is
near(the(λx.agent(x)), the(λy.red(y)∧chair(y))), which
acts as as the goal-state reward function in Section III.
This function is composed of relational operators (“in”),
definite determiners (“the”), and noun phrases describing
properties of objects. We adopt much of the notation from
[4, 3, 27, 24] for our lambda-calculus functions. However, we
eschew the neo-Davidsonian event semantics used by Artzi
and Zettlemoyer [4], as our tasks are purely represented by
state configurations. As such, we deliberately avoid modeling
components of trajectories in our semantic representations,
which preserves our efficient separation of language and
planning components of the system, at a cost to the ex-
pressiveness of our semantic representation. Rather than
implementing our CCG semantic representations as database
queries [27] or trajectory specifications in a custom-built
navigation domain [4], we implement our lambda-calculus
functions as operating on objects in OO-MDP states.

We primarily model five components of natural language
necessary to completing our tasks:

1) Nouns: We model nouns as single-argument lambda-
calculus functions that map OO-MDP objects in a given state
to Boolean values. For example, the phrase “block” would
be represented as a function λx.block(x). When this phrase
is evaluated in an OO-MDP state on a particular object o, it
returns true if o is a block.

2) Adjectives: Adjectival language, such as “green block,”
are modeled as conjunctions of these single-argument propo-
sition functions. The function λx.green(x)∧block(x) checks
two attributes of the object provided as its argument. As an
OO-MDP object is parameterized using object classes and
attributes, these single-argument proposition functions can
be implemented as lookup operations on object instances.

3) Definite Determiners: We model the definite deter-
miner “the” as a function that maps a proposition function
to an object that satisfies the given proposition function,
following Artzi and Zettlemoyer [4]. This can be represented
as a search over a set of objects in an OO-MDP state. We
note that definite determiners are evaluated with respect to
the initial state of the task, as we assume object references
should be resolved at the world-state in which the natural
language command was issued.

4) Comparators: Comparators, such as “the biggest” or
“the smallest,” are modeled as argmax and argmin op-
erators over the entire space of objects with respect to a
proposition function over objects and a numerical property of
objects. The operator searches over all objects that satisfy the
provided proposition function with respect to the comparison
being made, and chooses the object that maximizes the nu-
merical property. In our model, we only provided the argmax
with a size operator, although in principle the operator could
be any single-argument function that returns a number from
an object. Comparators, like definite determiners, are also
resolved with respect to the initial world-state.

5) Relations: Spatial relationships between two objects
are modeled as lambda-calculus functions of arity two.
The function λx.λy.in(x, y), for example, uses the spatial
dimensions of the object provided as the second argument
to determine if it contains the first argument. All relation-
ship proposition functions produce Boolean outputs when
evaluated in a given OO-MDP state. Currently, we model
four spatial relationships: containment (in), adjacency (near),
and directional adjacency to the right or left of the referent.
All lambda-calculus functions were implemented as pre-
specified JScheme [1] predicates that operate on states and
objects in the BURLAP [17] reinforcement learning library.

B. Parser Learning

To map natural language to elements of our semantic
representation, we learn a weighted linear CCG parser [9]
that maps natural language commands x ∈ X to a logical
form y ∈ Y in our semantic representation. We collect a data
set where each element is of the form (xi, Si), where xi ∈ X
is a natural language command, and Si is a set of pairs of
MDP states, as described in Section V. To learn this parser



(a) State at task initiation (b) State at task completion

Fig. 2: The figure shows an example pair used to collect
data. Here we ask the users to give a command to the robot
that will result in the pre- and post condition behavior shown
in the pair of images.

without providing semantic representations as annotations
directly, we define a validation function that determines if
a given semantic parse will produce the correct behavior
as described by our training data. We additionally use a
modified form of the coarse lexical generation procedure
of Artzi and Zettlemoyer [4] to produce new CCG lexical
entries from training data. To learn parser weights, we use
the validation-driven perceptron learning algorithm of Artzi
and Zettlemoyer [4] as implemented in the Cornell Semantic
Parsing Framework (SPF) [2].

1) Parser: Our learning objective is to learn a set of
parser weights θ ∈ Rd for a weighted linear CCG parser
[9] with a d-dimensional feature representation Φ(x, y). This
parser uses a variant of the dynamic-programming CKY
algorithm to produce the highest scoring parse ŷ from
a natural language command x. To perform training and
inference, we use the linear CCG parser implemented in
the Cornell SPF [2]. We added additional features to our
model to induce correct behavior in situations where similar
language describes different tasks depending on context. For
example, the phrase “go to” either implies a containment or
adjacency relationship depending on the object being referred
to. Earlier iterations of the parser commonly confused our
in and near predicates. To resolve this, we added features
recording pairwise appearances of specific predicates.

2) Parse Validation: To facilitate our validation-driven
perceptron learning, we define a parse validation function
similar to those of Artzi and Zettlemoyer [4]. We define the
function V(y, S) ∈ {0, 1}, which takes as input a semantic
parse y and set of pre- and post- condition state pairs
S = (Si, Sf ).

V(y, S) =

{
1, y(Si) = 0 ∧ y(Sf ) = 1

0, otherwise

We validate over all state pairs provided with a given
natural language command. This function ensures that the
semantic parse y correctly defines the desired set of goal
states. As our tasks define sets of goal states, this is sufficient
to check if a parse is valid without invoking a planner. For
comparison, we tested against a baseline approach that ex-
ecuted planning with proposed proposition functions during

validation, in Section VI.
3) Coarse Lexical Generation: To generate new lexical

entries for words and phrases not present in the seed lexicon,
we adapt the coarse lexical generation algorithm of [4]
to our validation procedure. The algorithm generates new
proposed lexicon entries from all possible combinations of
factored lexical entries (see [16] for a detailed description
of the lexicon) and words in a given training examples, then
discards entries leading to parses that fail to validate.

V. DATA COLLECTION

Example Sentences Collected from AMT

“Move to the green room”
“Go by the red chair”
“Move to stand next to the chair”
“Move close to the chair”
“Stand in the blue room”

TABLE I: Example sentences collected from the AMT HIT
where the users were shown a set of pre-and post condition
states and asked to give a command that would instruct the
robot to complete the task.

Our complete dataset (see Section V) contains 23 tasks,
which include moving to any of the three rooms present
in our domain, navigating to and relocating objects in the
domain, all of which may be specified using room and object
attributes, comparators (“the biggest room”), or in reference
to relationships between objects in our domain (“go the room
that the block is in”). Each task describes a set of goal states
that the user desires the agent in our domain to reach. For
each task, we generated five pre- and post- condition state
pairs (Figure 2) using our simulator.

We then gathered training data using using the Amazon
Mechanical Turk (AMT) platform. Users were shown three
pairs of pre- and post- condition states, sampled from the
total five, all representing the same task in different domain
configurations. We chose the number of pairs to minimize
cognitive load while maximizing the generalizability of the
produced language. They were then asked to provide a single
command that would instruct the robot to complete the
task in every domain configuration. This provided multiple
pre- and post- condition pairs for each training example,
to incentivize both the learning algorithm and AMT users
to produce outputs that are task- rather than configuration-
specific. Some example commands gathered from AMT are
shown in Table I. Using this approach, we collected a total
of 2211 commands.

Many commands received from AMT users contained in-
correct commands, many of which implied that the users only
examined one of our three pairs of pre- and post- condition
states. Some commands were vague and did not describe
any specific task, while others only applied to the first pair of
images shown to users. Including these commands in our data
set actively misleads our parser, encouraging it to produce
incorrect parses. We removed 174 such commands from the
dataset to produce a pruned dataset.



VI. EXPERIMENTS AND RESULTS

We performed three sets of experiments on our corpus,
collected as described in Section V. First, we trained and
tested our model on the full corpus collected from AMT,
and a subset of the corpus manually pruned of incorrect
and misleading commands. In the second experiment we
tested our method against a baseline method that executes a
planner during training, similar to earlier weakly supervised
CCG parser learning approaches [4, 5]. This experiment was
performed with a smaller training corpus, to allow planners
with long horizons to validate the parser learning in a
reasonable time-frame. For our third experiment, we reduced
the level of supervision (that is, the number of demonstration
state pairs,) available during learning, while leaving the test
data unchanged.

Setup: We provided the learning algorithm with a seed
lexicon as in [4, 5, 27], used to initialize the coarse lexical
generation procedure described in Section IV-B.3. This seed
lexicon contained words and phrases paired with syntactic
categories and the lambda-calculus meaning representations
elaborated upon in Section IV-A This seed lexicon contained
simple noun phrases and adjectives such as “chair” and
“red,”, comparators such as “the largest”, and imperatives
such as “move to” or “go to,” represented with corresponding
lambda-calculus logical forms. In addition to using these
lexical entries during parsing, the coarse lexical generation
procedure used during learning produces new lexical entries
from words found in the training data and meaning repre-
sentations in the seed lexicon. We used a beam width of 75
for lexicon generation during training, which was performed
over 15 epochs. At both training and test time, the CCG
parser used a beam width of 150.

A. Evaluation on AMT Corpus

Training Set Demos/Cmd Best F1

Raw AMT 3 0.64
Pruned 3 0.82
Pruned 2 0.75
Pruned 1 0.71

TABLE II: F1 score on held-out test data, using varying
levels of supervision and dataset quality.

We performed training on two permutations of the data
set collected from AMT: the raw dataset, including many
incorrect and misleading commands as described in Section
V, and a pruned dataset with incorrect commands manually
removed. Testing was performed by validating against state
pairs provided with the held-out test data. The full dataset
contained 1833 training commands and 678 test commands,
each paired with 3 pre- and post- condition demonstration
state pairs. The pruned dataset contained 1619 training
commands and 418 test commands, each paired with 3
demonstrations as well. We observed a F1 score of 0.64
on the held-out test data of the raw dataset, and expected
it to increase when errors were removed from the dataset as
described in Section V. This pattern was observed, with an
F1 score of 0.82 on the pruned dataset.

Planning horizon Time taken to learn in s F1 score

1 step 1201953 (∼ 20 mins) 0.0
10 steps 24024701 (∼ 6.67 hours) 0.667
20 steps 47597724 (∼ 13.22 hours) 0.667
Our method (no planning) 87.18 0.72

TABLE III: Timing results and F1 scores on a dataset of a
train and test split of 50 and 20 commands. The planning
based parsing baseline spends most of the learning time
computing plans for incorrect parses while learning to parse.
The planning based methods spend more time learning and
perform poorly when compared to our method.

B. Ablation Experiments

To test our parser’s robustness to ambiguity in the demon-
strations provided during learning, we performed learning
with varying levels of supervision and tested against the
same held-out test corpus. As our full corpus contains three
pre- and post- condition state pairs as demonstration for each
command, to incentivize the learner to produce compact and
accurate proposition functions, we trained models with one
and two commands provided as supervision and compared
their performance. We hypothesized that providing fewer
states as supervision would render the parser vulnerable to
ambiguities in demonstrations - for example, if a provided
command is “go near the block” but the learner is only
provided with a demonstration in which the agent moves near
the block but into the blue room, the proposition function
in(the(λx.agent(x)), the(λy.blue(y) ∧ y.room(y)) would
validate as correct, leading the parser to develop incorrect
lexical entries and model weights. We observed that per-
formance relative to the model provided with three demon-
strations decreased progressively when demonstrations were
removed, as shown in the final two rows of Table II.

C. Baselines

To compare against a planning-driven baseline, we created
a dataset of 50 training and 20 test commands, containing
3 behaviors from our dataset. We produced full demonstra-
tion trajectories for these commands. We created the small
dataset due to time constraints, as baseline methods take
can upwards of 15 hours to run on a 50-command dataset.
Much of the decrease in speed comes from attempting to
validate invalid parses produced during training. The baseline
method uses a planning based validation similar to that
used in Artzi and Zettlemoyer [4]. In our baseline, plans
are generated for every logical expression constructed and
matched to demonstration trajectories in the training data.
Parses are valid if the final state in the trajectory produced
by the planner and the training trajectory satisfy the logical
expression generated by the parser. Our method uses the first
and final states of trajectories for parse validation during
training, circumventing the repeated planning problem by
ensuring that the logical expressions generated satisfy the
terminal state of the dataset, without any planning. Using
goal-state reward functions as task representations enables
this simplification and the corresponding gain in efficiency.



The planning times can be made arbitrarily costly by
increasing the horizon of planning, we present results for
three different horizons, 1, 10, 15, all of which take more
time and preform worse than our method. The results are
shown in Table III. The 1 step planning horizon is insufficient
for the agent to reach the goal states in our dataset which can
be ∼ 10− 15 steps away. However, 10 and 20 step planning
horizons find correct parses with a comparable or slightly
lower F1 score than our method.

VII. ROBOT DEMONSTRATION

To interface our parser with a Turtlebot robot, we use
reward functions produced by the parser to produce plans
in a physical mobile manipulation domain. The domain
is a modeled as an MDP after Cleanup World [18]. The
configuration of the three rooms can be changed. The states
of the robot and the block are being tracked by a motion
capture rig. The robot’s actions are forward, turn left, turn
right, which are executed on the robot as a series of Twist
messages over ROS [22]. We show a user asking the robot to
get to the right of the block, taking the block to the red room
and moving to the largest room, and the robot performing
these tasks appropriately. The video of the demonstrations is
online at https://youtu.be/YChlga1wwAc.

When performing the task “get to the right of the block”
the authors expected the agent to circle the block and thus
arrive on its right side. However the planner computed that a
more efficient plan would be to move the block so the agent
reaches the goal of being to the right of the block. This
behavior shows that there is more subtlety to language than
our semantic representation captures - moving to the right
of an object assumes that the object or the landmark has to
be stationary. We do not model any landmarks or objects
as stationary in our domain or our semantic representation,
which can be added in future work. Moreover, this behavior
also shows the importance of modeling tasks with MDPs so
as to plan optimally.

Next we demonstrate the performance of our parser using
limited training data and its ability to extend its model to
tasks not seen at training time. We train our parser for
two tasks: “go to the green room” and “move next to the
block.” We provide the parser with 6 sentences and a total
of 6 pairs of pre- and post condition states. We collect this
data from our Cleanup Domain simulator. Next we learn a
parser for this data using our method using the parameters
described in Section VI. We then use this parser to plan
on the robot for the seen tasks of “going to the green
room” and “going next to the block”. More importantly, the
parser successfully executes the unseen task of “going to the
blue room.” The seed lexicon provided to the parser during
training contains the words: “blue”, “green” and “red” along
with their symbols blue, green and red respectively. The
parser learns to infer that the symbols are adjectives used
to describe objects and transfers this knowledge to unseen
data, allowing the robot to plan for unseen commands with
a very small amount of data. This small data set test shows

the strength of our method to teach behavior to a robot that
is generalizable with a handful annotations.

VIII. DISCUSSION

In this work, we modeled goal-based tasks as reward
functions within an MDP formalism. Mapping to reward
functions allows the robot to plan optimally in real world
stochastic environments. However, the tasks presented in this
work are a subset of the possible tasks that humans can
specify using natural language. For example tasks that spec-
ify a trajectory constraint such as “walk carefully along the
river” cannot be modeled as a goal state. Mapping language
to event based semantic representations such as those of
Artzi and Zettlemoyer [4] would allow us to model such
language. However, event based semantic representations
requires tracking event history, which weakens the Markov
assumption behind MDPs that enable efficient planning.

During data collection users described tasks using nested
referential expressions in a way that we did not foresee.
For example, users asked the agent to go the room that
the chair was in, instead of asking the agent to go near
the chair. Our learned parser composed nested referential
expressions for these language commands to produce the
right behavior while accurately representing the literal mean-
ing of the language. However we noticed that our model
had issues disambiguating between in and near symbols
because the language that the users provided was similar
when describing the tasks of going into a room and moving
close to an object. For example: the phrase “go to” was used
to command the robot to both enter a room and move near a
block. We introduced new co-occurrence features to capture
dependencies between pairs of predicates. This incentivized
the parser to learn, for example, that an agent cannot get into
a block. This leads to the correct behavior by the agent, but
an incorrect representation of the sentences that use nested
referential expressions in lambda calculus. This demonstrates
that the parser’s behavior can be altered in unexpected ways
by the addition or removal of features.

Automated generation of reward functions from supervised
or unsupervised methods is an important element of teaching
behaviors to reinforcement learning or planning agents. We
have focused on an approach that uses language and goal
states to learn reward functions. In the weakly supervised
setting Guu et al. [12] used algorithmic methods to reduce
errors caused by ambiguity in demonstrations, which we
instead address by providing more demonstrations to the
parser to add clarity to the training commands provided.
Other approaches have learned reward functions in an un-
supervised setting from videos [23]. Future work could
combine language and videos in an unsupervised setting.

IX. CONCLUSION

We presented a method for learning a parser that maps
natural language commands to reward functions using a CCG
parser via weak supervision. We showed that this parser
can be learned using modifications of existing semantic
parser learning algorithms, and its outputs are executable



as goal-state reward functions with off the shelf planners.
Our model produces valid reward functions with an F1
score of 0.82 while showing an improvement in learning
time over planning based methods. To the best of the
authors’ knowledge we are the first to use CCG parsing to
produce MDP reward functions, enabling optimal planing
in stochastic environments We also show the use of our
learning method to learn from and generalize with a handful
(6 instances) of training data. In future we would like to
model more complicated temporal behaviors expressed using
natural language, possibly with Linear Temporal Logic [21].

X. ACKNOWLEDGEMENTS

We thank Yoav Artzi for his insightful comments and help
with the Cornell SPF library. We also thank George Konidaris
and Lawson L.S. Wong for helpful feedback.

This work is supported by the National Science Founda-
tion under grant number IIS-1637614, the US Army/DARPA
under grant number W911NF-15-1-0503, and the National
Aeronautics and Space Administration under grant number
NNX16AR61G.

REFERENCES

[1] Ken R. Anderson, Timothy J. Hickey, and Peter Norvig. The
jscheme language and implementation, 2013. URL http://
jscheme.sourceforge.net/jscheme/main.html.

[2] Yoav Artzi. Cornell SPF: Cornell Semantic Parsing Frame-
work, 2016.

[3] Yoav Artzi and Luke Zettlemoyer. Bootstrapping semantic
parsers from conversations. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, 2011.

[4] Yoav Artzi and Luke Zettlemoyer. Weakly supervized learning
of semantic parsers for mapping instructions to actions. In
Annual Meeting of the Association for Computational Lin-
guistics, 2013.

[5] Yoav Artzi, Dipanjan Das, and Slav Petrov. Learning compact
lexicons for ccg semantic parsing. In Proceedings of the
2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1273–1283. Association
for Computational Linguistics, October 2014.

[6] Dilip Arumugam, Siddharth Karamcheti, Nakul Gopalan,
Lawson L. S. Wong, and Stefanie Tellex. Accurately and
efficiently interpreting human-robot instructions of varying
granularities. In Robotics: Science and Systems XIII, 2017.

[7] R. Bellman. A Markovian decision process. Indiana Univer-
sity Mathematics Journal, 6:679–684, 1957.

[8] B. Carpenter. Type-Logical Semantics. MIT Press, Cambridge,
MA, USA, 1997.

[9] Stephen Clark and James R Curran. Wide-coverage efficient
statistical parsing with ccg and log-linear models. Computa-
tional Linguistics, 33(4):493–552, 2007.

[10] Carlos Diuk, Andre Cohen, and Michael L. Littman. An
object-oriented representation for efficient reinforcement
learning. In International Conference on Machine Learning,
2008.

[11] Nakul Gopalan, Marie desJardins, Michael L. Littman, James
MacGlashan, Shawn Squire, Stefanie Tellex, John Winder, and
Lawson L. S. Wong. Planning with abstract markov decision
processes. In Proceedings of the Twenty-Seventh International
Conference on Automated Planning and Scheduling, pages
480–488, 2017.

[12] Kelvin Guu, Panupong Pasupat, Evan Zheran Liu, and Percy
Liang. From language to programs: Bridging reinforce-

ment learning and maximum marginal likelihood. CoRR,
abs/1704.07926, 2017.

[13] Thomas M. Howard, Stefanie Tellex, and Nicholas Roy. A
natural language planner interface for mobile manipulators. In
IEEE International Conference on Robotics and Automation,
2014.

[14] Michael Janner, Karthik Narasimhan, and Regina Barzilay.
Representation learning for grounded spatial reasoning. arXiv
preprint arXiv:1707.03938, 2017.

[15] Jayant Krishnamurthy and Tom M. Mitchell. Weakly super-
vised training of semantic parsers. In Proceedings of the
Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning,
2012.

[16] Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and
Mark Steedman. Lexical generalization in ccg grammar induc-
tion for semantic parsing. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages
1512–1523. Association for Computational Linguistics, 2011.

[17] James MacGlashan. Brown–UMBC Reinforcement
Learning and Planning (BURLAP)–Project Page.
http://burlap.cs.brown.edu/, 2014.

[18] James MacGlashan, Monica Babeş-Vroman, Marie desJardins,
Michael L. Littman, Smaranda Muresan, Shawn Squire, Ste-
fanie Tellex, Dilip Arumugam, and Lei Yang. Grounding
english commands to reward functions. In Robotics: Science
and Systems, 2015.

[19] Dipendra Misra, John Langford, and Yoav Artzi. Mapping
instructions and visual observations to actions with reinforce-
ment learning. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing. Associ-
ation for Computational Linguistics, 2017.

[20] Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse
reinforcement learning. In Proceedings of the Seventeenth
International Conference on Machine Learning, ICML ’00,
pages 663–670, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc. ISBN 1-55860-707-2.

[21] Amir Pnueli. The temporal logic of programs. In Proceedings
of the 18th Annual Symposium on Foundations of Computer
Science, SFCS ’77, pages 46–57, Washington, DC, USA,
1977. IEEE Computer Society. doi: 10.1109/SFCS.1977.32.

[22] Morgan Quigley, Josh Faust, Tully Foote, and Jeremy Leibs.
Ros: an open-source robot operating system.

[23] Pierre Sermanet, Kelvin Xu, and Sergey Levine. Unsu-
pervised perceptual rewards for imitation learning. CoRR,
abs/1612.06699, 2016.

[24] Mark Steedman. The Syntactic Process. MIT Press, Cam-
bridge, MA, USA, 2000. ISBN 0-262-19420-1.

[25] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R.
Walter, Ashis Gopal Banerjee, Seth Teller, and Nicholas
Roy. Understanding natural language commands for robotic
navigation and mobile manipulation. In AAAI Conference on
Artificial Intelligence, 2011.

[26] Edward C. Williams, Mina Rhee, Nakul Gopalan, and Stefanie
Tellex. Learning to parse natural language to grounded reward
functions with weak supervision. In AAAI Fall Symposium
on Natural Communication for Human-Robot Collaboration,
2017.

[27] Luke Zettlemoyer and Michael Collins. Learning to map
sentences to logical form: Structured classification with proba-
bilistic categorial grammars. In Proceedings of the Conference
on Uncertainty in Artificial Intelligence, 2005.

[28] Luke Zettlemoyer and Michael Collins. Online learning
of relaxed ccg grammars for parsing to logical form. In
Proceedings of the Joint Conference on Empirical Methods
in Natural Lanugage Processing and Computational Natural
Language Learning, 2007.


