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Abstract

This paper surveys the use of natural language in robotics from a

robotics point of view. To use human language, robots must map words

to aspects of the physical world, mediated by the robot’s sensors and

actuators. This problem differs from other natural language processing

domains due to the need to ground the language into noisy percepts

and physical actions. Here we describe central aspects of language

use by robots, including understanding natural language requests, us-

ing language to drive learning about the physical world, and engag-

ing in collaborative dialog with a human partner. We describe com-

mon approaches, roughly divided into learning methods, logic-based

methods, and methods that focus on questions of human-robot inter-

action. Finally, we describe several application domains for language-

using robots.
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1. INTRODUCTION

As robots become more capable, they are moving into environments where they are sur-

rounded by people who are not robotics experts. Such robots are appearing in the home, in

non-dedicated manufacturing spaces, and in the logistics industry (169, 69), among other

places. Since most users will not be experts, it is becoming essential to provide natural,

simple ways for people to interact with and control robots. However, traditional keyboard-

and-mouse or touch-screen interfaces require training, and must be complex in order to

enable a person to command complex robotic behavior (201). Higher level abstractions

such as automata (19), programming abstractions (15), or structured language (96) offer a

great degree of power and flexibility, but also require a great deal of training to use.

Natural Language
Processing (NLP):
Computational
techniques for

transforming human
languages such as

English into machine

usable structures.

In contrast, people use language every day to direct behavior, ask and answer ques-

tions, provide information, and ask for help. Language-based interfaces require minimal

user training and allow the expression of a variety of complex tasks. This paper reviews

the current state of the art in natural language (NL) communication with robots, com-

pares different approaches, and discusses the challenges of creating robust language-based

human-robot interactions. The fundamental question for language-using robots is: how can

words and language structures be grounded in the noisy, perceptual world in which a robot

operates (70)?

We distinguish between two dual problems: Language understanding, where the robot

must interpret and ground the language, usually producing a behavior in response; and

language generation, in which the robot produces communicative language, for example to

ask for explanations or answer questions. In the latter problem, the robot may need to

reason about information gathering actions (such as when to ask clarification questions) or

incorporate other communication modalities (such as gesture). Systems that address both

problems enable robots to engage in collaborative dialog.

Grounded Language
Understanding:
Interpreting a

natural language
utterance in terms

of the physical state

of the robot and the
environment.

There is a long history of systems that try to understand natural language in physi-

cal domains, beginning with Winograd (197). Generally, language is most effective as an

interface when users are untrained, are under high cognitive load, and when their hands

and eyes are busy with other tasks. For example, in search-and-rescue tasks, robots might

interact with human victims who are untrained and under great stress (131). The context in

which language is situated can take many forms; examples include sportcasts of simulated

soccer games (42), linguistic descriptions of spatial elements in video clips (174), GUI in-

teraction (24), descriptions of objects in the world (118), spatial relationships (92), and the

meaning of instructions (112). Language has also been used with a diverse group of robot

platforms, ranging from manipulators to mobile robots to aerial robots. Some examples are

shown in Figure 1.

Language for robotics is currently an area of significant research interest, as evidenced

by many recent workshops (examples include (191, 120, 12, 6, 2)) and papers covered in

this article. Other survey papers have reviewed related topics; for example, Fong et al.

(59) surveys socially interactive robots, and Goodrich and Schultz (63) and Thomaz et al.

(182) give broad surveys of human-robot interaction, although neither focuses on language

specifically. This survey is intended for robotics researchers who wish to understand the

current state of the art in natural language processing as it pertains to robotics.

Figure 2 shows a system flow diagram for a language-using robot. First, natural lan-

guage input is collected via a microphone or text. Words are converted to a semantic

representation via language processing; possible representations range from a finite set of

actions to an expression in a formal representation language such as predicate calculus.
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(a) Using language to ask
for help with a shared task.
Tellex et al. (176)

(b) A Baxter robot learns
via dialog, demonstrations
and performing actions in
the world. Chai et al. (37)

(c) A Jaco arm identifying
objects from attributes, here
“silver, round, and empty.”
Thomason et al. (179)

(d) The Gambit manipulator
follows multimodal pick-and-
place instructions. Matuszek
et al. (121)

(e) A Pioneer AT achieving
goals specified as “Go to the
break room and report the
location of the blue box.”
Dzifcak et al. (51)

(f) CoBot learning to follow
commands like “Take me to
the meeting room.” Kollar
et al. (93)

(g) TUM-Rosie making pan-
cakes by downloading recipes
from wikihow.com. Nyga
and Beetz (134)

(h) A socially assistive robot
helping elderly users in per-
forming physical exercises
Fasola and Matarić (54)

(i) A Baxter performing a
sorting task synthesized from
natural language. Boteanu
et al. (22)

Figure 1: Robots used for language-based interactions.

For example, the words “red block” might be converted to a formal expression such as

λx : block(x) ∧ red(x). Next, symbols in the semantic representation are connected or

grounded to aspects of the physical world. For example, the system might use inference

to search for objects in its world model that satisfy the predicates block and red. The

results inform decision-making; the robot might perform a physical action such as retrieval,

or a communicative action such as asking “This red block?”. Many approaches to language

for robotics fit into this framework; they vary in the behaviors they include, the problems

they solve, and the underlying mathematics of the modules.

This paper is organized as follows: Section 2 gives preliminary material common to

all methods. Section 3 covers technical approaches, organized around the method used

to achieve language-using robots. Section 4 provides an orthogonal view which organizes
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Figure 2: System diagram showing language input and output integrated into a robotic

system. Many approaches include only a subset of the modules. Greyed-out modules are

relevant to language interpretation but not reviewed in this paper.

the state of the art around the problem being addressed: human-to-robot communication,

robot-to-human communication, and two-way communication. Section 5 concludes with a

discussion of current open questions and a summary of the review.

2. PRELIMINARIES

In this section, we define common terminology used in this field and provide technical

background needed to understand many of the approaches described later in the paper. We

review the concept of grounded language, as well as the syntactic and semantic structure

of language, and statistical language processing.

2.1. Grounded Language

Grounded (or situated, or physically situated) language has meaning in the context of the

physical world—for example by describing the environment, physical actions, or relation-

ships between things (129, 70). Possible groundings range from low-level motor commands

to perceptual inputs to complex sequences of actions. Grounded language acquisition is the

process of learning these connections between percepts and actions. For example, if a person

instructs a robot to “Pick up the cup,” the robot must map the words “cup” to a particular

set of percepts in its high dimensional sensor space. It must recognize that a particular

pattern in its camera sensor, for example, corresponds to the word “cup.” Then, to follow

the command, it must produce a plan or a policy that causes its end effector to create a

stable grasp of the cup and lift it. Many aspects of this plan are implied by the language

but not explicitly stated; for example, if the cup has water in it, the robot should lift it

in a way that causes the water to not spill. This mapping between language and objects,

places, paths, and events or action sequences in the world is a key challenge for language and

robotics and represents the grounding problem. For robots, language is primarily used as a

mechanism for describing objects or desired actions in the physical world; much of the work

described in this survey is in the domain of grounded language. A key research question

is how to represent this mapping between words and symbols and high dimensional data

www.annualreviews.org • 5



Natural Language
Possible
Sensor/Actuator

Category
Grounding/
Interpretation

“Turn left” Wheels, Legs
Command
understanding

Contra-rotate
steering actuators

“Red” Camera World sensing Output label “red”
from color classifier

“This is a laptop”
Camera, RGB-D
Sensor

Object recognition
Output label

“laptop” from
multiclass classifier

“Above you” Range Sensor
Understanding
spatial
relationships

Location in positive
z-space with respect
to robot

“Hand me the orange
mug on the left”

Manipulator + all
sensors above

Combined All of the above

Table 1: Examples of natural language and possible groundings. Column 1: Natural lan-

guage that might occur when instructing or informing a robot. Column 2: Possible sensors

or actuators providing the physical context. Column 3: The underlying task or reason-

ing problem implicitly encoded in the language. Column 4: The physically situated, or

grounded, meaning of the language.

streaming in from sensors, and high dimensional outputs that are available from actuators.

Table 1 shows examples of language and possible groundings. Note that in some cases, the

grounding is a discrete output from a classifier, while in other cases it is a high-dimensional

controller command, such as contra-rotate the steering actuators. These are examples of

possible groundings that have been used in the literature; a key research question is what

the grounding process should look like, and how this mapping should be carried out.

Grounded Language:
Language that refers

to or is interpreted

in reference to the
physical world.

2.2. Syntactic Representations and Analysis

Natural language has a hierarchical, compositional syntax (73) which is studied in linguistics

and cognitive semantics. This structure enables people to understand novel sentences by

combining individual words in new ways (146). This syntactic structure can be used to

help extract semantic representations of the words’ meaning. A variety of formalisms have

been created to express this structure, of which the best known is context-free grammars

(CFGs), developed in the 1950s by Noam Chomsky (77). CFGs and their many variants are

used to describe the syntactic structure of natural language. A formal definition of CFGs

can be found in Sipser (163), while Figure 3 gives an example CFG for a small subset of

English with an associated parse tree. Many variants of CFGs exist. Pre-trained parsers are

a common tool, many of them (41, 89) trained using the Penn Treebank (115), a corpus of

text manually annotated with parse trees. Other parsers are trained on corpora of text, such

as newspaper articles. This data is often not a good fit for robotics tasks, which typically

contain imperative commands and spatial language, leading to reduced performance on

robotics tasks by off-the-shelf tools.

Parse Tree: A

structures that

represents the
syntactic

decomposition of an

utterance in the
form of a rooted

tree.

Many robotics applications use Combinatory Categorial Grammars (CCGs) (166).

CCGs are a grammar formalism created to handle linguistic constructions such as coordina-

tion (e.g., “John and Mary like apples and oranges.”) that cannot be expressed by CFGs.

CCGs are useful because they model both the syntax and the semantics of language—an

6



V P → V B NP

NP → DT NN

DT → the|a|an

NN → block|ball|apple

V B → grab|move

(a) CFG for a small
subset of English.

VP

VB

Grab

NP

DT

an

NN

apple

(b) Parse tree and sentence produced from
the grammar. The structure defines com-
positional relations among word meanings.

Figure 3: Grammar and parse tree for the English sentence “Grab an apple”.

approach which is useful for real-world language learning. These learned elements take the

form of lexical entries, which combine natural language, syntax, and semantics. Extensive

work has been done on automatically creating parsers (200, 7, 76), typically learning from

pairs of NL sentences and sentence meanings. CCGs have been applied to robotic language

understanding in many contexts (51, 121, 7, 98), reviewed in all of the following sections.

2.3. Formal Semantic Representations of Language

Semantic representations, which capture the meanings of words and sentences in a formalism

that can be operated on by computers, can be extracted with (or from) syntactic structures,

such as the example in Figure 3. A possible semantic interpretation can be captured by the

first-order logic formula ∃x(apple(x) ∧ grab(x)) (that states “there exists an x that is an

apple and that is being grabed”). Given a consistent formal meaning for, e.g., grab(), this

expression can be interpreted and used for understanding actions in the world. There

is extensive work on symbolic representations of semantics, for example (82, 194, 170,

73). CFG productions can be combined using λ-calculus rules to automatically construct

semantic representation from a syntax tree. In this section, we briefly mention the main

semantics building blocks that are used by many approaches.

λ-calculus: A
formalism for

expressing

computation in
terms of function

arguments and

application.

First-order predicate logic extends propositional (Boolean) logic with predicates, func-

tions, and quantification. Semantic meaning can be extracted using compositional operators

associated with each branch of the syntactic tree. To perform language grounding in the

context of robotics, these operators must be grounded in the physical world, i.e., through

sensors and actuators, for example grab() could be grounded to a manipulation action.1

Temporal logics are modal logics that contain temporal operators (52), allowing for the

representation of time-dependent truths. (For example, the phrase “Grab an apple” implies

that the apple should be grabbed at some future point in time, an operation referred to as

‘eventually,’ written ♦GrabApple, where GrabApple is a Boolean proposition that becomes

True when the apple is grabbed.) There are different temporal logics that vary in several

important dimensions, including whether time is considered to be discrete or continuous,

whether time is linear (formulas are defined over single executions) vs. branching (formulas

1Additional reading regarding the formal syntax and semantics of first-order predicate logic can be
found in logic texts, for example Huth and Ryan (81).

www.annualreviews.org • 7



are defined over trees of executions), and whether they are deterministic, or include prob-

abilistic operators and reasoning. The survey (97) describes the use of several temporal

logics in the context of robot control.

Temporal Logic:
Logic that includes
temporal operators.

Roughly speaking,

the truth value of a
formula is evaluated

over sequences of
states labeled with

the truth values of

the propositions.

2.4. Statistical NLP and Deep Learning

Substantial progress in NLP has been made by eschewing the explicit modeling of linguis-

tics structures. For example, n-gram models which focus on counting words (113) robustly

capture aspects of language use without requiring a full understanding of syntax or mean-

ing, by leveraging the statistics of word co-occurrance. Shallow parsing or chunking has

been shown to be useful to capture aspects of syntax and semantics without performing a

complete analysis of the sentence (85). Many approaches rely on less linguistically plausible

but more robust structures to achieve learnability and tractability. Modern approaches use

word vectors to capture or learn structure, such as Long Short Term Memory (LSTMs) (75)

combined with Word2Vec (124) or Paragragh Vector (104). These approaches learn a vec-

tor representation associated with either words or longer documents, and then compute

over an entire sentence to perform tasks such as language modeling, parsing, or machine

translation. Many robotic applications leverage these techniques to learn a statistical or

deep model that maps between a human language and one of the formal representations

mentioned above.

3. CLASSIFICATIONS BY TECHNICAL APPROACH

In this survey paper we cluster approaches based on three broad categories: lexically-

grounded methods (section 3.1), learning methods (section 3.2), and HRI-centered ap-

proaches (section 3.3). The first category, lexically-grounded methods, focuses on defining

word meanings in a symbol system, typically through a manual or knowledge base ground-

ing process, and using logic, grammars and other linguistic structures to understand and

generate sentences. The second category of approaches covers learning word and utterance

meanings from large data sets, with inspirations drawn from machine learning and compu-

tational linguistics. Finally, HRI-centric approaches focus on the language experience for

people interacting with robots. While we use these broad categories to discuss approaches,

in practice much of the work in this field belongs to more than one category. The categories

are not intended to be mutually exclusive, but rather to provide a possible framework for

considering the overall research space.

3.1. Lexically-Grounded Methods

In this section, we describe work that uses a priori grounded tokens such as objects and

actions, with formal symbolic representations for the underlying semantics. Many of these

approaches are based on formal logics; frequently temporal logics are used, as there are

algorithms to transform the resulting formulas into behavior that provides guarantees on

performance and correctness (97). These approaches are often less robust to unexpected

inputs produced by untrained users and can be difficult to implement at scale due to the

manually grounded lexicon; however, they enable grounding rich linguistic phenomena such

as anaphora (for example, the it in “Grab the apple, I want to eat it”) and reasoning about

incomplete information.

8



3.1.1. Grounding Tokens. Common to the formal approaches described in this section is the

grounding of linguistic tokens, such as nouns and verbs, to perceptual information and robot

actions. For example, the token “cup” can be grounded to the output of an object detector,

or the action “open door” can be grounded to a motion planner that controls a manipulator.

These groundings can either be learned or manually prescribed, but as opposed to learning

approaches (Section 3.2), analysis of utterances and groundings is performed using syntactic

and formal semantic structures. Because manually grounding words in a lexicon is a time

consuming process, it is common to use existing knowledge bases and cognitive architectures

to automatically enrich the lexicon using a base set of manual groundings.

Knowledge Bases and Ontologies. Many existing knowledge bases provide real-world

“common sense” knowledge that can be used to create language-using robots. WordNet (58)

provides a lexicon of word meanings in English along with relations to other words in a hier-

archy. These relations map symbols to other symbols, and can be used to initialize or enrich

groundings, especially nouns. VerbNet (159) is a large lexicon of verbs, including frames, ar-

gument structures, and parameterized actions. Given a grounding of an action, many verbs

can be used in associated natural language utterances (107). Similarly, FrameNet (10) cre-

ated a dataset of verb meanings with parameterized actions. ImageNet (50) is an image

database organized along nouns in the WordNet hierarchy. This dataset has been used

extensively in computer vision and provides information that could enable a robot to de-

tect objects and ground noun phrases. Datasets that are specific to a particular type of

grounding task also exist, such as RefCOCO (114) for referring expressions.

Cognitive Architectures. Similar to knowledge bases, cognitive architectures encode rela-

tionships between symbols; however, these architectures typically encode complex relations

between concepts in cognitive models designed to support reasoning mechanisms that en-

able completion of inferential tasks. In the context of language and robotics there has been

work done with Soar (102, 165), DIARC (157, 158), and ACT-R (185), among others.

Soar (102, 165) is a theoretical framework and software tool designed to model human

cognition. It includes knowledge, hierarchical reasoning, planning, execution, and learn-

ing, with the intent of creating general purpose intelligent agents able to accomplish many

different tasks. Researchers have proposed NL-Soar (154), a system that enables language

understanding and generation that is interleaved with task execution. From the language

side, tree-based syntactic models, semantic models and discourse models are constructed

that enable the system to create a dialog with a person. Building on this work, Instructo-

Soar was introduced by Huffman and Laird (80), enabling grounding new instructions to

procedures in Soar. Instructo-Soar assumes simple imperative sentences which are straight-

forward to parse and instantiate as a new operator template. Language groundings can also

be learned from mixed-initiative human-robot interactions that include language, gestures

and perceptual information (128). The language to be grounded is first syntactically parsed

based on a given grammar and dictionary, and then the noun phrases are mapped to objects

in the perceptual field, the verbs to actions in the Soar database and spatial relations to a

set of known primitives.

ACT-R (Adaptive Character of Thought-Rational) and ACT-R/E (Adaptive Character

of Thought-Rational/Embodied), introduced by Trafton et al. (185), are frameworks in

which cognition is implemented in an embodied agent that must move in space. ACT-R/E

has as a goal the ability to model and understand human cognition in order to reproduce

www.annualreviews.org • 9



and imitate human cognitive capabilities. It has some language capabilities in order to

accept commands such as “Go hide” to play hide-and-seek.

The Distributed Integrated Cognition Affect and Reflection (DIARC) Architecture (157,

158), under development for more than 15 years, adopts a distributed architecture that does

not attempt to model human cognition. Instead, different instantiations that correspond to

different cognitive abilities with varying levels of complexity can be created, determined by

the intended use. In the DIARC Architecture (158, 32, 33, 94), researchers created a system

that incrementally processes natural language utterances, creates goals for a planner, and

executes the instructions, shown in Figure 1e (51). In that work, the lexicon is labeled with

both syntactic annotations from a combinatory categorial grammar (CCG (166, 7)) and

semantic annotations in the form of λ-expressions related to the temporal logic CTL* (52),

and first-order dynamic logic (FDL). When an utterance is provided, it is incrementally

parsed, i.e. a parse is available after every token, the parse is updated as new tokens are

received, and the semantics are incrementally produced. Later work employs pragmatic

inference to enable more complex language interaction where the meaning of the utterances

may be implicit and where context and semantics are combined (195, 196).

Probabilistic Action Cores (PRAC) (134), while not a cognitive architecture per se,

generalize the notion of a knowledge base by creating a system that enables inferring over,

disambiguating, and completing vague or under specified natural language instructions by

using information from existing lexical databases and by drawing on background knowledge

from WordNet and framenet, among others. From this information the robot can infer a

motor action that causes a source object to end up in a goal location. An image from this

work is shown in Figure 1g.

All of these architectures rely on hand-coded atomic knowledge that a human designer

imparts to the robot, plus composition operators that enable the creation of more complex

knowledge. These frameworks are carefully designed based on theories of cognition, leading

to rich, evocative demonstrations. However, it is difficult for these systems to scale to large

datasets of language or situations produced by untrained users. This sort of scaling and

robustness is a key future challenge.

3.1.2. Formal Reasoning. In addition to grounding tokens such as objects and places into

detectors, approaches that utilize formal reasoning typically attach semantics structures to

lexical items, such as verbs, and to the production rules of the grammar. These semantic

structures are used to understand the semantics of utterances and define new lexical items

such as objects and actions. The semantics are typically fed into either a dialog manager or

a planner that executes situated robot actions. Broadly speaking, the following approaches

to language interactions follow a similar pipeline: NL utterances in the form of text are

syntactically parsed, then semantically resolved (and in some work pragmatically analyzed),

to produce formal representations of the language’s meaning.

Early examples of end-to-end systems that use formal representations for natural lan-

guage interactions were Grace and George, robots that competed in the AAAI robot chal-

lenges. At AAAI 2004, Grace acted as an information kiosk providing information about

the conference and giving directions, while George physically escorted people to their des-

tination (162). Both robots utilized the Nautilus parser (142), which uses a context-free

grammar to produce an intermediate syntactic representation that can be pattern-matched

to a semantic structure available to the interpreter. Building on the Nautilus parser and the

Grace system, the MARCO agent (111) was created to interpret route instructions given

10



in NL, combining syntactic and semantic structures with information from the perception

system regarding the environment.

Grounding and executing NL instructions from websites such as wikiHow.com was ex-

plored by Tenorth et al. (177). The system uses the Stanford parser (48) in which a proba-

bilistic context-free grammar is used to syntactically parse instructions. These instructions

are grounded using WordNet (58) and Cyc (106) and are captured as a set of instructions

in a knowledge base. Later work (88) discussed controlled natural language as a way to

repair missing information through explicit clarification. Nyga et al. (135) used a similar

probabilistic model for using relational knowledge to fill in gaps for aspects of the language

missing from the workspace.

In Raman et al. (149), Lignos et al. (107), high-level natural language tasks are grounded

to Linear Temporal Logic (LTL) (52) formulas by using part-of-speech tagging and parsing

to create the syntactic structure. VerbNet (159) is then used to find the sense of the verb

and assign a set of LTL formulas as the semantics. In that work the mapping of verb senses

to LTL is done manually; in other work (22, 23), semantic mappings are learned using the

distributed correspondence graph (78) framework; an image from this work is shown in

Figure 1i.

Siskind (164) presents another framework for formally reasoning about time and state

changes with manually defined verb meanings. The approach allowed a robot to identify

objects and generate actions by defining a formal framework for objects and contact. The

work was based on force dynamics and event logic, a set of logical operators about time.

3.2. Learning Methods

This section covers work on learning models of language meanings from large data sets. The

task is to learn a mapping between natural language and symbols in a formal language. In

some approaches the symbols are given. In others, symbols are created as these groundings

are learned; these methods are robust to a wide variety of language produced by untrained

users, but offer few guarantees on performance and correctness.

Data and Domains for Learning Methods. Learning-based approaches use a wide va-

riety of datasets, tasks, and formats for training. Data sets typically consist of natural

language paired with some form of sensor-based context information about the physical

environment. Often, an annotated symbolic representation is also provided. The form of

sensor data varies; raw perceptual input such as joint angles is often too low level, but

higher level representations depend on the specific approach. Some of the common datasets

being used currently in language grounding and robotics are listed in Table 2 along with

the type of sensor, language and annotation data.

We accompany Table 2 with a brief example of applying a dataset for a robotic task.

The MARCO dataset (111) of navigation instructions is the most widely used of the existing

datasets (111, 117, 92, 175, 7). Beyond being one of the earliest available datasets in this

space, its wide uptake is partly because it contains not only route directions, but a complete

simulation environment in which to navigate. Thus a potential user of the dataset does

not need to provide their own robot or handle potentially different sensing or actuation

capabilities. Instead, language learning approaches can be directly compared with previous

approaches on the same problem by using the NL instructions in MARCO, then testing in

the same simulated environment.
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For example, ten years after the original work used a hand-crafted grammar to explicitly

model language (111), Mei et al. (123) use a long short-term memory recurrent neural net

(LSTM-RNN) to learn to follow directions. This work estimates action sequences from

NL directions, performing end-to-end learning directly from raw data consisting of tuples of

natural language instructions, perceived world state, and actions. The LSTM-RNN encodes

the navigational instruction sequence and decodes to action sequences, incorporating the

observed context (world state) as an extra connection in the decoder step.

The challenge in using any of these datasets is the mismatch between the data provided

and the actual data that will be encountered in a real robotic task. The robot in a task may

have different sensors, actuators, and representations than the one used in the task. For

example, the MARCO dataset uses butterflies as a landmark object; most real environments

do not have these butterflies, but have other landmarks that may not appear in MARCO.

Learning more general concepts such as ‘landmarks’ is a key open question for future work.

A key question for data-based methods is determining a space of possible meanings for

words: into what domain might language be grounded? Domains may consist of specific ob-

jects or areas in the environment, perceptual characteristics, robot actions, or combinations

thereof. The meaning of language is often grounded into predefined formalisms, which maps

well to existing work in formal semantics (73). However, in more machine learning oriented

work, there is a trend towards systems that learn the representation space itself from data,

leading towards systems that do not need a designer to pre-specify a fully populated set of

symbols and allowing robots to adapt to unexpected input. For example, Matuszek et al.

(118) and Pillai and Matuszek (143) showed that symbols for shape, color, and object type

can be learned from perceptual data, enabling the robot to create new symbols based on

its perceptual experience, while Richards and Matuszek (150) extend that work to creating

symbols that are not category-limited.

We divide the following approaches into those that primarily use pre-defined lan-

guages (section 3.2.1), those that are more concerned with discovering the domain (sec-

tion 3.2.2), and recent work on using deep neural networks for language understanding (sec-

tion 3.2.3). In practice, work in this area falls along a spectrum, ranging from formal meth-

ods approaches which use completely manually defined word meanings (111), to learning

mappings between words and a prespecified formal language (42, 119, 22), to learning new

symbols from data while specifying perceptually motivated features (172), to learning new

features from data as well as a mapping between word meanings and those features (118).

3.2.1. Learning to Map to Predefined Symbolic Spaces. Mapping to predefined symbolic

structures has a natural analog in machine translation research. In machine translation, the

goal is to translate a sentence from one language to another language (for example, “Pick

up the block” in English to “Podnieść blok” in Polish). Many approaches take as input a

parallel corpus of sentences in the two natural languages and then learn a mapping between

the languages. When applied to robotics, the input language is a natural language, and the

output is a formal representation language that the robot can act on. The challenge is then

to specify an appropriate formal robotic language and acquire a data set or parallel corpus

with which to train the model.

This approach has been applied to a variety of domains, such as enabling a robot to

learn to interpret natural language directions from pairs of directions and programs that

follow those directions (111, 117, 42). The same approach can be used for the inverse

problem of generating natural language descriptions of formally represented events, such
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Dataset Type of Data Link to dataset

MARCO dataset
(111)

Navigation instructions given to a
robot to navigate a map, and the route
followed.

www.cs.utexas.edu/
users/ml/clamp/navigation/

Scene dataset(98) Images and descriptions of objects in
the image.

rtw.ml.cmu.edu/
tacl2013 lsp/

Cornell NLVR
dataset (168)

Pairs of images and logical statements
about them which are true or false.

lic.nlp.cornell.edu/nlvr/

CLEVR dataset
(84)

Images and question-answer pairs. cs.stanford.edu/people/
jcjohns/clevr/

Embodied
Question
Answering (47)

Pairs of questions and answers in sim-
ulated 3D environments. The agent
needs to search the environment to
find the answer.

embodiedqa.org

Visual Ques-
tion Answering
in Interactive
Environments (65)

Pairs of questions and answers in dif-
ferent simulated 3D environments.

github.com/danielgordon10/
thor-iqa-cvpr-2018

Room-to-Room
(R2R) Navigation
(4)

Panoramic views in real buildings,
paired with instructions to be followed.

bringmeaspoon.org/

H2R lab language
grounding datasets
(9, 64)

Predicate based sub-goal conditions
paired with natural language instruc-
tions.

github.com/h2r/
language datasets

Cornell Instruction
Following
Framework
(17, 125)

Data for three separate navigation do-
mains in 3D environments, containing
instructions paired with trajectories.

github.com/clic-lab/ciff

MIT Spatial Lan-
guage Under-
standing dataset
(92, 172)

Pairs of language command and tra-
jectories for navigation and mobile
manipulation.

people.csail.mit.edu/
stefie10/slu/

Table 2: Datasets used in Language Grounding and Robotics

as RoboCup soccer games (43). MacGlashan et al. (110) showed that a robot can learn

to map to a predefined space of symbolic reward functions using the classic IBM Model 2

machine translation approach (28); once the reward function has been inferred, the robot

finds a plan that maximizes the reward, even in environments with unexpected obstacles.

Misra et al. (126) learns to map between words and a predefined symbolic planning space

using a graphical modeling approach, interpreting commands such as “Turn off the stove.”

Other approaches use semantic parsing to automatically extract a formal representation

of word meanings in some formal robot language. These systems vary in terms of the formal

language used. For example, Matuszek et al. (119) created a system that learns to parse

NL directions into RCL, a robot control language for movement. This work could learn

programmatic structures in language such as loops (e.g., “drive until you reach the end of

the hallway.”) Alternatively, Artzi and Zettlemoyer (7) created a system for learning se-
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mantic parses for mapping instructions to actions in order to follow natural language route

instructions, while Thomason et al. (178) learn semantic parse information and grounded

word meanings from dialog interactions with users. Fasola and Mataric (55) used a prob-

abilistic approach to learn mappings between commands and a space of actions of service

robots, including models for spatial prepositions. Brooks et al. (27), Boteanu et al. (22, 23)

and Arumugam et al. (9) ground language to objects and specifications expressed in Linear

Temporal Logic. A key difference in all of these approaches is the formal language chosen

to represent the meaning of the human language; in many cases the formal language can

represent only a subset of the meanings possible in natural language.

3.2.2. Learning to Map to Undefined Spaces. We draw a distinction between learning to

map between predefined symbol spaces and approaches which extend the space of symbols

that natural language may be grounded into. We emphasize that this is a spectrum; all

learning approaches rely to a greater or lesser extent on some predefined structure. Less

prespecification means the system is more general and can be extended to unexpected tasks

and environments, but also increases the difficulty of the learning problem. Substantial

current effort is focused on learning from very little prespecified data.

The Generalized Grounding Graph framework (G3) (172) was introduced to interpret

natural language commands given to a robotic forklift, as well as to interpret route in-

structions for a wheelchair (92) and a micro-air vehicle (79). It uses a graphical model

framework to represent the compositional structure of language, so that the framework

can map between words in language and specific groundings (objects, places, paths, and

events) in the physical world. It learns feature weights in a prespecified feature space to

approximate a function for mapping between words in language and aspects of the world.

This work has been extended to enable robots to ask NL questions that clarify ambiguous

commands (49, 175), and then to enable robots to ask for help (176). It has been extended

by Howard et al. (78) to create an efficient interface for interpreting grounded language by

mapping to planning formalisms; this approach dramatically increases the speed that words

can be interpreted by the robot. Building on this framework, Paul et al. (138) created a

system that learns to interpret subsets of objects, such as “the middle block in the row of

five blocks.”

Other approaches do not require features to be prespecified, but do encode a space of

possible features as well as data sources from which features are derived. Roy and Pent-

land (152) created a system for learning nouns and adjectives from video of objects paired

with infant-directed speech. It learned to segment audio and map phonemes to percep-

tual features without a predefined symbol system. Matuszek et al. (118) created a system

for learning word meanings for words by automatically creating new features for visual

object attributes, while Pillai and Matuszek (143) learned to select negative examples for

grounded language learning. Guadarrama et al. (68) created a system for interpreting open-

vocabulary object descriptions and mapping them to bounding boxes in images, leveraging

large online data sets combined with a model to learn how to use information from each

dataset. Blukis et al. (18) learn to create a semantic map of the environment by project-

ing between the camera frame and a global reference frame. These approaches represent

emerging steps toward an end-to-end learning framework from language to low-level robot

control.
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3.2.3. Grounding Language using Deep Learning. Modern deep learning based approaches

of Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Deep-

Q Networks (DQN) led to successes in computer vision, machine translation, and rein-

forcement learning. Using neural networks or a connectionist architecture is not novel.

Older neural network based approaches like Billard et al. (14), Cangelosi et al. (31) learned

robot behavior from demonstrations neural networks and mapped language to these be-

haviors. Roy and Pentland (153) used recurrent neural networks to learn word boundaries

by phoneme detection directly from speech signals. However the amount of data being

used and represented in modern deep learning methods is much larger in scale and allows

for end-to-end learning. These novel deep approaches were applied to solve problems of

language grounding (e.g. (123, 1)). In this paper we do not survey these methods in great

detail, but provide a short introduction to the types of problems that have been tackled

with deep learning based approaches.

We split this discussion based on the problems addressed by these methods.

Instruction following with Seq2Seq. Some of the earliest progress was made in the

area of instruction following (123, 9). This is a supervised problem where given a natural

language command, a sequence of actions is performed by the agent. In this problem setup a

common theme is to treat a language command and a sequence of actions performed by the

agent as a machine translation problem using RNN based Sequence to Sequence (seq2seq)

approaches (123). Other have abstracted the problem to learn the grounding from natural

langauge to sub-goals or goals (64, 5). These methods have been implemented on robots

only when the abstract fixed grounding symbols have been provided (9).

Some approaches try to reduce the amount of supervision by converting this instruction

following problem into a reinforcement learning problem. This was first done with classical

policy gradient methods by Branavan et al. (24). More recently it has been applied to richer

environments with visual inputs (47, 74, 125). A common strategy is to model the agent

and its environment as a Markov Decision Process (MDP), and encode the instruction given

to the agent as the state of the environment. Such agents have been able to answer question

about the properties of objects, or navigate to objects in simulation. This approach is hard

to implement on a physical robot given the number of episodes required to learn behaviors.

Grounding objects in images. Grounding or captioning objects within images to their

names is an active area of research within deep learning. Initially this work started as

classifiers to recognize an object class within an image (99). This work then progressed

to captioning images densely, that is, recognizing all objects within an image (83, 86). A

general approach, first described in (86) is to align vectorized object representations within

the image with the vectorized representations of sentences used to describe the objects in

the image. These approaches are capable of labeling activities being performed by the

objects of interest, and also allow retrieval of images described by natural language (83).

These methods have been implemented in physical robots in an object retrieval setting by

training the robot on simulated images (161, 71).

Grounding control from robot perception. Blukis et al. (18) learned to map between

navigation instructions and low level control actions, mediated by the robot’s sensor input

and control actions. This work aims to perform end-to-end learning from language to control

actions and has since been demonstrated on physical robots.
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Figure 4: A categorization of work using language for human-robot interaction. This vi-

sualization spans efforts using language to support efficient robot learning, efforts to use

language in order to maximize the effectiveness of human-robot interactions, and using

robots as physically situated agents to support language learning.

3.3. HRI-Centered Approaches

The final broad category of work we consider is that which lies primarily in the area of

human-robot interaction. While work in the previous sections are grouped by learning and

representation models, here we describe how NLP research supports and is supported by

robots that interact directly with people. It is often these approaches that create the most

robust behaviors and end-to-end systems, drawing on insights from learning and logic-based

methods.

We discuss language-based HRI efforts as divided broadly by tasks, considered on a

spectrum (see Figure 4). On one end, language provides a natural supporting mechanism

for robot learning (Section 3.3.1). In this area, language is used as a tool to support

robots learning other tasks. On the other, robots provide an ideal testbed for learning to

understand physically-situated language; here the robot is a platform for learning grounded

language. This subtopic is substantial and has been covered in Section 3.2. Tied to both

areas are efforts whose primary goal is the development of systems that use language in

order to support robust human-robot interaction (Section 3.3.2).

3.3.1. Language-Based Interactions to Improve Robot Learning. Robots that learn have

the potential to automatically adapt to their environment and achieve more robust behavior.

In this section, we describe how language technology can enable more efficient and effective

robot learning, especially from human teachers. Natural language provides an accessible,

rich mechanism for teaching robots, while still being grounded in the physical world. The

vast body of literature on human learning provides questions about learning modalities,

information presentation, reward functions, and interaction-based learning. In this section,

we describe current work on developing robot systems that learn about the world from

natural language inputs. This includes efforts on: 1) Learning from demonstration; 2)

Learning reward functions from language; 3) Active learning; and 4) Learning how to elicit

instructional language.

When learning physical concepts like object characteristics or actions, the physical ref-

erent must be linked to linguistic structures. This is seen both explicitly, as in referring

expressions (e.g., “This is a yellow block”), and implicitly, as when connections are learned

from the coexistence of words and percepts during training. Exploring this connection be-

tween linguistic references and their grounded referents is the basis of substantial work on
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learning from demonstration, or LfD, in which demonstrations connect the learning concepts

and the language used.

In LfD, language is used as a learning signal to improve robot learning and capabilities.

Steels and Kaplan (167) used language and camera percepts to learn novel instance based

objects and their association with words. Billard et al. (14) used LfD to ground language

with a constrained vocabulary to a sequences of actions demonstrated by the teacher. Chao

et al. (39) used LfD to ground concepts for goal learning, where the concepts are discrete,

grounded percepts based in shared sensory elements with human explanations. Concepts are

denoted in words to human participants, but language is not part of the learning problem:

word meanings are provided to the system by the designer. Krening et al. (95) used object-

focused advice provided by people to improve the learning speed of an agent. Language

can also be used to describe actions rather than perceived objects, as in programming

by demonstration, in which demonstrations of actions are paired with natural language

commands Forbes et al. (60). Programming by demonstration can also rely on more complex

semantic parsing, as in Artzi et al. (8), in which language is interpreted in the context

provided by robot state. In all of these papers, humans use language to provide information,

advice, or warnings to the robot to improve task performance.

Language can be used to provide explicit feedback to a learning system. The mechanism

for learning from that feedback can be treated as a learning problem itself. In this frame-

work, language is learned jointly with policies, rather than jointly with direct observations,

allowing less situation-specific learning (110). This approach can allow a non-specialist

to give an agent explicit reward signals (141), or can model implicit feedback strategies

inherent in human teaching (108, 109).

Robots asking questions about their environment is a form of active learning, in which

the learning agent partially or fully selects data points to label. Asking questions that

correspond to a person’s natural teaching behavior (183) is balanced with selecting data

that optimizes learning, as queries to a user are a sharply limited resource (30). In general,

incorporating active learning makes learning more efficient and makes it possible to learn

from fewer data points (145, 180, 137). This form of learning can be implemented in

a domain-independent way, as in Knox et al. (91), and can improve efficiency on learning

tasks, including both explicit language grounding (144) and more general robotics problems,

such as learning conceptual symbols (100)), spatial concepts (139), or task constraints (72).

Another topic in learning from language provided by nonspecialists is how to correctly

elicit information and demonstrations from people. Chao and Thomaz (38), explore con-

ducting dialog correctly, with appropriate multi-modal timing, turn-taking, and responsive-

ness behavior (40). It also means figuring out what questions to ask; Cakmak and Thomaz

(29) studied how humans asked questions and designed an approach to asking appropriately

targeted questions for learning from demonstration, while Pillai and Matuszek (143) demon-

strates a method for automatically selecting negative examples in order to train classifiers

for positively labeled grounded terms.

3.3.2. Human-Robot Interaction Using Language. Human-robot interaction, or HRI, is

one of the most active areas for grounded language research. Language provides a natural

mechanism for interacting with physical agents, in order to direct their actions, learn about

the environment, and improve interactions. At the same time, interacting with people

provides a rich source of information and training data that robots can learn from in order

to improve their capabilities. Language-based human-robot interaction is a broad, active
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field of study. In this section, we attempt to provide an overview of some of the categories

of current HRI/language research.

Childhood education is a significant area of research for human-robot interaction stud-

ies (184), both because there is a chronic shortage of personnel in education and childcare,

and because increasing the role of technology in childhood education is a critical part of

attracting a larger and more diverse population into STEM fields. Research in this area

largely focuses on the role of interactive play in child development. This can take the form

of acting out stories between children and robots (105), assisting with language develop-

ment (61, 26, 192, 187), or serving as intelligent tutoring systems (148, 44).

Language in HRI is often paired with other interaction modalities. Modalities such as

gesture and gaze direction affect everything from deictic (referential or attention-drawing)

interactions to what role a robot may play in a setting (133). There is a growing body of

work in which language is incorporated into multimodal human-robot interactions (122).

Matuszek et al. (121) used a combination of language and unconstrained, natural human

gestures to drive deictic interactions when using language to teach a robot about objects,

while Huang et al. (79) use modeling to evaluate robots’ use of gesture. In the inverse

direction, Pejsa et al. (140) use people’s speech, gaze, and gestures to learn a multimodal

interaction model, which is then used to generate natural behaviors for a narrating robot.

Another key area of HRI research is work on assistive robotics, in which robots perform

tasks designed to support persons with physical or cognitive disabilities. This support can

take many forms; with respect to language, social and cognitive support is most common.

Socially assistive robot systems have been used to engage elderly users in physical exer-

cise (66, 57), incorporating language pragmatics and anaphor resolution (56, 54) as well as

verbal feedback. Verbal robots have also been explored in the context of autism support (25)

and tutoring for Deaf infants (156).

4. CLASSIFICATIONS BY PROBLEM ADDRESSED

Most of the above approaches can be applied to more than one communication task. Here

we review those tasks, divided into three sections: understanding communications from a

human to a robot (the largest body of work), generating linguistic communication from a

robot to a human, and two-way systems that endeavor to both understand and generate

language.

4.1. Human-to-Robot Communication

Human-to-robot communication is the problem of enabling robots to interpret natural lan-

guage directives given by people. Understanding a person’s language requires mapping

between words and actions or referents in the physical world. Specific subproblems include

command understanding, where a person gives a command, as well as a person providing

information to the robot.

4.1.1. Giving Robots Instructions. Command understanding is the problem of mapping

between language and physical actions on the part of the robot. One early and widely con-

sidered domain is route direction following, where a mobile robot must interpret instructions

on how to move through an environment. MacMahon (111) created a large dataset of route

directions in simulation, which has been used in a number of papers (42, 7). Kollar et al. (92)

18



used a statistical approach to interpret instructions for a robotic wheelchair. Shimizu and

Haas (160) used a CRF approach to learn word meanings, and Matuszek et al. (117) used

a machine translation approach to learn to follow instructions in real-world environments,

including counting and procedural language such as the “third door” or “until the end of

the hall.” Robotic platforms used for this problem include a robotic wheelchair (92, 111),

robotic UAVs (79), and mobile robots (16). Understanding navigational commands remains

a significant and ongoing area of research (130).

A second class of problems is interpreting natural language commands for manipulator

robots. This problem has been studied in the subdomain of interpreting textual recipes (21,

13), following instructions for a robotic forklift (172), interpreting instructions to a tabletop

arm (121, 177), and a Baxter robot (22, 23). Such language may refer only to the robot’s

motion; for example, Correa et al. (45) created a robotic forklift with a multimodal user

interface that interpreted shouted commands such as “Stop!” However, since manipulators

manipulate things in the world at least some of the time, this class of commands is frequently

blended with understanding language about objects.

Another frequently-studied task is understanding instructions in cooking, particularly

focusing on following the semi-constrained language of recipes. Beetz et al. (13) used a

reasoning system to interpret recipes and cook pancakes. Tasse and Smith (171) created

a dataset of recipes mapped to a formal symbolic representation, while Kiddon et al. (87)

created an unsupervised hard EM approach to automatically mapping recipes to sequenced

action graphs; neither system used robots. Bollini et al. (21) created a system for inter-

preting recipes, but did not ground ingredients into perception. Although the language

of recipes is constrained, it remains a challenging problem to understand, in part because

ingredients combine into new things that do not exist at the time of original interpretation.

Flour, eggs, water and sugar are transformed to a batter, which is then transformed to a

quick bread. Interpreting forward-looking language that maps to objects that do not yet

exist is a difficult problem. Similarly, instructions often require the robot to detect certain

perceptual properties, as in “Cook until the cornbread is brown.” This perceptual requires

advances in perception combined with language to create or select a visual detector to

identify when this condition has been met.

4.1.2. Telling Robots About the World. A second element of language interpretation is

enabling robots to use language to improve their knowledge of the world. Compared to

instruction-following, this topic is a less studied area, but there is nonetheless a rich array

of approaches. Cantrell et al. (34) created a system that updates its planning model based on

human instructions, while the system of Walter et al. (190) incorporates information from

language into a semantic map of the environment. Pronobis and Jensfelt (147) describe

a multi-modal probabilistic framework incorporating semantic information from a wide

variety of modalities including perceived objects and places, as well as human input.

We briefly discuss two specific important subproblems in human-to-robot communica-

tion: How robots can resolve references to and understand descriptions of objects; and

understanding descriptions involving spatial relationships. One of the major areas in which

robots have the potential to help people is in interacting with objects in the environment,

meaning it is critical to be able to learn about and understand physical references, both

spatial (as in “the door near the elevators”) and descriptive (as in “the yellow one between

the two toys,” or, more abstractly, “a nice view”).
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References to Objects. Robots may need to retrieve, manipulate, avoid, or otherwise be

aware of objects being referred to in language. Language about objects and landmarks in

the world can be broken down by level of specificity; we roughly categorize language at

these different levels of abstraction as follows:

• General language about object characteristics, such as color, shape, or size. (121, 11,

155)

• Descriptions of objects at the type, or category membership, level. This encompasses

approaches that tie language into object recognition. (101, 198, 143, 153)

• Language about particular instances of objects, such as “my mug.” (92, 172, 196, 167)

These categories often overlap. As examples, the first step for recognizing an instance is

often finding all objects in that category, or object types might be further differentiated by

their attributes, as in “The yellow block.”

Another issue is interpreting complex descriptions. For example, one route direction

corpus contains the instruction “You will see a nice view,” referring to a view out of a set

of windows the robot would pass. This expression requires the robot to make a subjec-

tive judgment about the world. A corpus of object descriptions contains the phrase “A

small pyramid like the pharaohs live in” (121), which requires differentiating direct physical

descriptions from background knowledge. In addition, it is not always clear what defines

an object. A bottle consists of a bottle and a cap, and a person referencing “the bottle”

may mean both, or they may say “Grab the bottle, then turn the cap” to refer to them

separately. For assembly tasks, a part such as a screw and a table leg may combine to form

a completed assembly, the table (176, 90). Grounding these sorts of expressions is an open

problem.

Referring
Expressions: Natural

language expressions

that uniquely denote
objects, areas, or

people to which the

speaker is
referring. (85)

Referring expression resolution. Understanding natural language expressions that de-

note particular things in the robot’s environment is another key subproblem. Referring

expressions may occur in commands (e.g., “Go through the door near the elevators,” in

which the robot must identify the referenced door) as well as manipulation instructions

(e.g., “Pick up the green pepper.” (172, 196)) Chai et al. (36) created a system that inter-

prets multimodal referring expressions using a graph-based approach. Whitney et al. (193)

and Matuszek et al. (121) merge information from language and gesture to interpret multi-

modal referring expressions in real time, using a filtering approach and a joint classification

approach, respectively. An image from Matuszek et al. (121) is shown in Figure 1d. Golland

et al. (62) generate spatial descriptions using game theory to generate human-interpretable

referring expressions in a virtual environment.

Spatial Relationships. Interpreting spatial relationships is a well-known, complex prob-

lem in NLP. For route instructions, this may take the form of “the door near the elevators,”

or “past the kitchen.” In object descriptions, it may be “at the top left corner.” Under-

standing these frequently requires not only referring expression resolution to understand

phrases referring to landmarks, but also pragmatic disambiguation of possible meanings.

Spatial prepositions are frequently used to refer to objects, places, or paths in the physical

world. Spatial prepositions are a closed-class part of speech; a typical language only has a

few and new ones are very rarely added. Cognitive semantics has focused on the structure

of spatial language and how humans use it, especially the argument structure as well as

semantic features that allow it to be interpreted (170, 103). Some work has focused specif-
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ically on spatial prepositions (3, 174, 173, 139). This problem also arises in the context

of referring expression resolution, since expressions such as “near” or “between” require

identifying a place or an object from distractors.

4.2. Robot-to-Human Communication

In the context of natural language user interfaces, people frequently expect spoken responses

when they speak to a system such as a robot. Language is an obvious way to engage in

active disambiguation, to convey information, and to provide context. People have studied

the problem of enabling a robot to produce natural language, either answering questions,

asking for help, or providing instructions. This problem is the inverse problem from language

understanding: the robot desires to communicate something to the person and must find

words to speak that convey its ideas. Subproblems include robots instructing people, robots

asking questions, and robots informing people.

4.2.1. Robots Instructing and Querying People. Often a robot might use language to try

to get a person to do something, typically by asking for help or asking them to carry out

an action. The most basic approach to language generation is template-based or scripted

approaches, in which a designer encodes the words the robot will say. For example, Fasola

and Matarić (54) used templates to generate language to motivate physical exercise for older

adults, shown in Figure 1h. This approach is straightforward and can result in sophisticated

sentences, but is limited in its adaptability to novel environments and situations. Other

approaches focus on enabling a robot to adaptively generate sentences based on the context.

Knepper et al. (90) generate natural language requests for help in assembling Ikea furniture

from untrained, distracted users. CoBots navigate an office environment delivering objects

and ask for navigation help using a human-centered planner to determine from whom to

ask for assistance (189).

A second sort of ‘instruction’ is actively using language to induce a person to provide

additional information, for example by asking a question. Deits et al. (49) presented an

algorithm to generate targeted questions based on information theory to reduce confusion.

Rosenthal and Veloso (151) modeled humans as information providers, using a POMDP

to ask questions when the robot encountered problems. Thomason et al. (181) created a

system for opportunistically collecting information from someone about objects in its envi-

ronment, in which a robot asks about objects near a person, including questions irrelevant

to the immediate task, and learning about objects from attributes (179), shown in Fig-

ure 1c. Cakmak and Thomaz (29), Pillai et al. (144), and others use of active learning to

select focused questions that allow the robot to efficiently collect information. All of these

approaches use statistical frameworks to generate instructions or queries given the robot’s

current physical context.

4.2.2. Robots Informing People. In addition to trying to instruct people with language, a

robot may also need to inform people about aspects of the world. For example, Chen et al.

(43) created a system that learns to generate natural language descriptions of RoboCup

soccer games by probabilistically mapping between word meanings and game events. Mutlu

et al. (132) created a storytelling robot that uses language as well as gaze to engage a human

listener. Cascianelli et al. (35) created a system for enabling a robot to learn to describe

events in a video stream and released a dataset for service robotic applications. All of

www.annualreviews.org • 21



these applications require the robot to communicate with a person about aspects of the

environment.

4.2.3. Generating References to Objects.. For the same reasons as a robot may need to

understand references to things in its environment (see 4.1.2), a robot may need to gener-

ate referring expressions about objects, landmarks, or people. Dale and Reiter (46) carried

out seminal work on generating referring expressions for definite noun phrases referring to

physical objects, such as “the red cup,” following Gricean maxims of quantity and quality

of the communication (67) and focusing on computational cost. This approach assumes

a symbolic representation of context, rather than grounding to perception. Golland et al.

(62) generated spatial descriptions using game theory to produce referring expressions in

a virtual environment that are interpretable by their human partner. Mitchell et al. (127)

generated expressions that refer to visible objects that a robot might observe with its cam-

era. Tellex et al. (176) provided an inverse-semantics algorithm for generating requests for

help, including expressions such as “the black leg on the white table” (shown in Figure 1a).

Golland et al. (62) generated spatial descriptions to objects in a virtual environment using

a game-theoretic approach to find the best language to pinpoint the object. Fang et al. (53)

created a system for collaborative referring expression generation using a graph-based ap-

proach that changes the generated language based on human feedback, while Zender et al.

(199) created a system for enabling a mobile robot to generate natural language referring

expressions to objects in the environment, as well as resolve expressions, using context to

determine how specific or general to make the resolution. From a robotics perspective,

these examples represent different contexts in which a physical agent may use language

production in order to improve its ability to accomplish real-world tasks or goals.

4.3. Two-Way Communication

Two-way communication involves enabling a collaborative interaction between a human

and a robot, either asynchronously or in dialog. Such a robot must interpret a person’s

communicative acts as well as generating communicative actions of its own. Two-way com-

munication requires more than simply combining language understanding and generation.

A robot must reason about uncertainty in its own percepts, retain conversational state,

react quickly to a person’s input, and work towards a communicative collaboration. Partly

as a result of these challenges, much work has focused on issues that arise from building

robotic systems that engage in dialog with a user and the associated design questions that

arise. A variety of end-to-end robotic systems have been created that use language. These

systems typically involve integration of many software and hardware components in order

to create an end-to-end user interaction. The focus is often on multimodal communication,

where language comprises one communication mode in the overall interaction.

For example, Bohus and Horvitz (20) created a computational framework for turn-taking

that allows an embodied conversational agent to take and release the conversational floor

using gaze, gesture, and speech. Some of these systems communicate by understanding

language, performing actions, and seeking help when problems are encountered. Matuszek

et al. (121) created a system for learning from unscripted deictic gesture combined with

language in order to perform manipulations. Okuno et al. (136) created a robot for giv-

ing route directions by integrating language utterances, gestures, and timing. Fasola and

Matarić (54) created a socially assistive robot system designed to engage elderly users in
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physical exercise. Veloso et al. (188) created the CoBots, mobile robots that engage in tasks

in an office environment such as fetching objects. Marge et al. (116) created a heads-up

hands-free approach for controlling a pack-bot as it moved on the ground. Tse and Camp-

bell (186) created a system that incorporates and communicates probabilistic information

about the environment. A more direct approach is to learn the spatial semantics of actions

directly from language (37), shown in Figure 1b. The CoBot systems learned to follow

commands like “Take me to the meeting room,” engaging in dialog with humans in its

environment to improve its ability (shown in Figure 1f) (93).

While these robots understand language, the robot-to-human side of communication can

take a form other than, or in addition to, speech. This multimodality reflects the multimodal

nature of inter-agent communication: even when talking, humans expect to be able to use

gesture, gaze and body language, as well as utterance timing and even prosody (voice tone

and inflection). Language-using robots must therefore be aware of these expectations and

work to address or mitigate them; failing to do so runs the risk of frustrating users when

attempting to communicate.

5. CONCLUSION

Language-using robots require models that span all areas of robotics, from perception to

planning to action. Researchers from diverse communities have contributed to ongoing

work in this exciting area, and much remains to be done. In this paper we have reviewed

methods for robots that use language. We covered technical approaches, ranging from

formal methods to machine learning to HRI approaches. We discussed problems to solve for

robotic language use, including learning from and receiving information from people, asking

questions, and giving people instructions. We present some of the most immediately relevant

NLP problems, such as referring expression resolution. Additionally, we briefly reviewed

work in related areas, including linguistics, cognitive science, computational linguistics,

vision and language, ontologies and formal representations, and nonverbal communication.

5.1. Open Questions

Research in formal methods has pointed toward mechanisms for capturing complex linguis-

tic phenomena such as anaphora resolution, interpreting commands about ongoing action,

and abstract objects. However, statistical methods often use simpler representations fo-

cused on concrete noun phrases and commands for ease of learning. As more sophisticated

formal models mature, statistical methods will enable learning of formal methods based

representations, combining benefits of robustness with more capable and complex language

understanding. At the same time, advances in deep learning have enabled learning ap-

proaches to learn from less data with end-to-end supervision. We expect that deep learning

applied to robotic language use will build on existing work to learn with less and less su-

pervision over time. We see opportunities for sophisticated semantic structures from formal

methods combined with learning approaches from deep learning to create a new generation

of language using robots capable of robustly interpreting sophisticated commands produced

by untrained users.

The power and terror of language is its ability to construct arbitrarily fine-grained and

specific sentences applying to all parts of the robot and its environment. As a result,

robust language-using robots must integrate language with all parts of a robotic system,
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a formidable task. As we move toward language-using collaborative robots, we need more

robust models for the entire planning and perceptual stack of the robot in order to integrate

with natural language requests, questions people might pose, learning from language, and

the generation of appropriate language and dialog by the robot. Similarly, the robot must

combine verbal and non-verbal modalities in interactive systems in order to fully understand

how people interact and to detect and recover from errors. Although daunting, the scale and

complexity of the problems described in this survey are indicative of the potential power in

bringing language into robotics, and in the potential for building flexible, interactive, and

robust systems by bringing the fields together.
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generation of spatial referring expressions for robotic assistants. In IJCAI, pages 1604–1609,

2009.

200. L.S. Zettlemoyer and M. Collins. Learning to map sentences to logical form: Structured

classification with probabilistic categorial grammars. Proceedings of 21th Conf. on Uncertainty

in Artificial Intelligence (UAI-2005), 2005.

201. Matt Zucker, Sungmoon Joo, Michael X Grey, Christopher Rasmussen, Eric Huang, Michael

Stilman, and Aaron Bobick. A general-purpose system for teleoperation of the DRC-HUBO

humanoid robot. Journal of Field Robotics, 32(3):336–351, 2015.

www.annualreviews.org • 35

http://www.ece.rochester.edu/projects/rail/mlhrc2016/
http://www.ece.rochester.edu/projects/rail/mlhrc2016/

	INTRODUCTION
	PRELIMINARIES
	Grounded Language
	Syntactic Representations and Analysis
	Formal Semantic Representations of Language
	Statistical NLP and Deep Learning

	CLASSIFICATIONS BY TECHNICAL APPROACH
	Lexically-Grounded Methods
	Learning Methods
	HRI-Centered Approaches

	CLASSIFICATIONS BY PROBLEM ADDRESSED
	Human-to-Robot Communication
	Robot-to-Human Communication
	Two-Way Communication

	CONCLUSION
	Open Questions


