
Deep Abstract Q-Networks
Melrose Roderick

Carnegie Mellon University

Pittsburgh, Pennsylvania

mroderick@cmu.edu

Christopher Grimm

University of Michigan

Ann Arbor, Michigan

crgrimm@umich.edu

Stefanie Tellex

Brown University

Providence, Rhode Island

stefie10@cs.brown.edu

ABSTRACT
Weexamine the problem of learning and planning on high-dimensional

domains with long horizons and sparse rewards. Recent approaches

have shown great successes in many Atari 2600 domains. However,

domains with long horizons and sparse rewards, such as Mon-

tezuma’s Revenge and Venture, remain challenging for existing

methods. Methods using abstraction [5, 13] have shown to be use-

ful in tackling long-horizon problems. We combine recent tech-

niques of deep reinforcement learning with existing model-based

approaches using an expert-provided state abstraction. We con-

struct toy domains that elucidate the problem of long horizons,

sparse rewards and high-dimensional inputs, and show that our

algorithm significantly outperforms previous methods on these

domains. Our abstraction-based approach outperforms Deep Q-

Networks [11] on Montezuma’s Revenge and Venture, and exhibits

backtracking behavior that is absent from previous methods.

KEYWORDS
Reinforcement Learning; Hierarchical Planning; Deep Learning

ACM Reference Format:
Melrose Roderick, Christopher Grimm, and Stefanie Tellex. 2018. Deep

Abstract Q-Networks. In Proc. of the 17th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2018), Stockholm, Sweden,
July 10–15, 2018, IFAAMAS, 8 pages.

1 INTRODUCTION
Recent advances in deep learning have enabled the training of rein-

forcement learning agents in high-dimensional domains. This was

most popularly demonstrated by Mnih et al. [11] in their research

into training Deep Q-Networks to play various Atari 2600 games.

While the performance attained by Mnih et al. spans an impressive

subset of the Atari 2600 library, several complicated games remain

out of reach from existing techniques, including the notoriously

difficult Montezuma’s Revenge (MR) and Venture. These anoma-

lously difficult domains exhibit sparse reward signals and sprawling

partially-observable mazes. The confluence of these traits produces

difficult games beyond the capabilities of existing deep techniques

to solve. In spite of these considerable challenges, these games are

some of the closest analogs to real-world robotics problems since

they require an agent to navigate a complex, unknown environment

and manipulate objects to achieve long-term goals.

As an example of a long-horizon problem, consider a domain

in which an agent is tasked with navigating through a series of

cluttered roomswith only visual input. The door to enter the desired

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

room is locked and the key is at a known location in another room in

this domain. The agent must navigate through several rooms to find

the key before retracing its steps to the door to unlock it. Learning

to navigate each individual room is on its own challenging, but

learning a policy to traverse multiple such rooms is much harder.

While a complete solution is presently out of reach, there have

been a number of promising attempts at improving the long-term

planning of deep reinforcement learning agents. These approaches

can be divided into two categories:

(1) Those that intrinsicallymotivate an agent to explore portions

of the state-space that exhibit some form of novelty [3].

(2) Those that exploit some kind of abstraction to divide the

learning problem into more manageable subparts [9, 15].

Both of these approaches suffer drawbacks. Novelty-based ap-

proaches indeed encourage exploration. However, this intrinsic

drive toward under-explored states tends to interferewith an agent’s

ability to form long-term plans. As a result, the agent may be able

to find the key in the rooms but is unable to make a plan to pick up

the key and then use it to unlock the door.

Abstraction-based approaches focus on end-to-end learning of

both the abstractions and the resulting sub-policies, and are hin-

dered by an extremely difficult optimization problem that balances

constructing a good abstraction while still exploring the state-space

and learning the policies to navigate the abstraction while the ab-

straction continues to change. Moreover, given the lack of strong

theoretical underpinnings for the “goodness” of an abstraction, lit-

tle external guidance can be provided for any such optimization

scheme.

To tackle domains with long horizons and sparse rewards, we

propose the following method in which an experimenter provides

a lightweight abstraction consisting of factored high-level states to

the agent. We then employ the formalism of the Abstract Markov

Decision Process (AMDP) [7] to divide a given domain into a sym-

bolic, high-level representation for learning long-term policies and

a pixel-based low-level representation to leverage the recent suc-

cesses of deep-learning techniques. In our toy example, the high-

level representation would be the current room of the agent and

whether the agent has the key, and the low-level representation

would be the pixel values of the image. The aforementioned fac-

toring decomposes this symbolic, high-level state into collections

of state-attributes with associated predicate functions in a manner

similar to Object Oriented MDPs [6]. This factoring allows us to

treat actions in our high-level domain as changes in attributes and

predicates rather than as state-to-state transitions, while avoiding a

combinatorial explosion in the action space as the number of objects

increases. For example, once a key is retrieved, the agent should

not have to re-learn how to navigate from room to room; holding a

key should not generally change the way the agent navigates.



In this work, we detail our method for combining recent tech-

niques of deep reinforcement learning with existing model-based

approaches using an expert-provided state abstraction. We then

illustrate the advantages of this method on toy versions of the room

navigation task, which are designed to exhibit long horizons, sparse

reward signals, and high-dimensional inputs. We show experimen-

tally that our method outperforms Deep Q-Networks (DQN) and

competing novelty-based techniques on these domains. Finally, we

apply our approach to Atari 2600 [2] Montezuma’s Revenge (MR)

and Venture and show it outperforms DQN and exhibits backtrack-

ing behavior that is absent from previous methods.

2 RELATEDWORK
We now survey existing long-horizon learning approaches includ-

ing abstraction, options, and intrinsic motivation.

Subgoals and abstraction are common approaches for decreasing

problem horizons, allowing agents to more efficiently learn and plan

on long-horizon domains. One of the earliest reinforcement learning

methods using these ideas is MAXQ [5], which decomposes a flat
MDP into a hierarchy of subtasks. Each subtask is accompanied by

a subgoal to be completed. The policy for these individual subtasks

is easier to compute than the entire task. Additionally, MAXQ

constrains the choice of subtasks depending on the context or parent

task. A key drawback to this method is that the plans are computed

recursively, meaning the high-level learning algorithm must recur

down into the subtrees at training time. This limitation forces the

use of a single learning algorithm for both the high-level and low-

level. Our approach avoids this problem, allowing us to use deep

reinforcement learning algorithms on the low-level to handle the

high-dimensional input and model-based algorithms on the high-

level to create long-term plans and guide exploration.

Temporally extended actions [10] and options [13] are other

commonly used approaches to decreasing problem horizons, which

bundles reusable segments of plans into single actions that can be

used alongside the environment actions. Learning these options

for high-dimensional domains, such as Atari games, is challenging

and has only recently been performed by Option-Critic [1]. Option-

Critic, however, fails to show improvements in long-horizon do-

mains, such as Montezuma’s Revenge and Venture. In our work we

seek to learn both the sub-policies and the high-level policy.

Some existing approaches have sought to learn both the options

and high-level policies in parallel. The hierarchical-DQN (h-DQN)

[9] is a two-tiered agent using Deep Q-Learning. The h-DQN is di-

vided into a low-level controller and a high-level meta-controller. It
is important to note that these tiers operate on different timescales,

with the meta-controller specifying long-term, manually-annotated

goals for the controller to focus on completing in the short-term.

These manually-annotated goals are similar to the abstraction we

provide to our agent: the goals in our case would be adjacent high-

level states. However, although this method does perform action ab-

straction, it does not perform state abstraction. Thus, the high-level

learner still must learn over a massive high-dimensional state-space.

Our approach, on the other hand, takes advantage of both state

and action abstraction, which greatly decreases the high-level state-

space allowing us to use a model-based planner at the high-level.

This pattern of a high-level entity providing goal-based rewards to

a low-level agent is also explored in Vezhnevets et al. [15] with the

FeUdal Network. Unlike the h-DQN, the FeUdal Network does not

rely on experimenter-provided goals, opting to learn a low-level

Worker and a high-levelManager in parallel, with the Manager sup-

plying a vector from a learned goal-embedding to the worker. While

this method was able to achieve a higher score on Montezuma’s

Revenge than previous methods, it fails to explore as many rooms

as novelty-based methods. In contrast, our approach provides the

abstraction to the agent, allowing us to leverage existing model-

based exploration algorithms, such as R-Max [4], which enable our

agent to create long-term plans to explore new rooms.

In addition to methods that rely on a goal-based form of reward

augmentation, there has been work on generally motivating agents

to explore their environment. Particularly, Bellemare et al. [3] de-

rive a pseudo-count formula which approximates naively counting

the number of times a state occurs. These pseudo-counts generalize

well to high-dimensional spaces and illuminate the degree to which

different states have been explored. Using this information, Belle-

mare et al. [3] are able to produce a reward-bonus to encourage

learning agents to visit underexplored states; this method is referred

to as Intrinsic Motivation (IM). This approach is shown to explore

large portions of MR (15/24 rooms). While this method is able to

explore significantly better than DQN, it still fails to execute plans

that required to complete MR, such as collecting keys to unlock

doors.

For example, in MR, after collecting its first key, the agent ends

its current life rather than retracing its steps and unlocking the

door, allowing it to retain the key while returning to the starting

location, much closer to the doors. This counterintuitive behavior

occurs because the factorization of the state-space in Bellemare

et al. [3] renders the presence of the key and the agent’s position

independent, resulting in the pseudo-counts along the path back to

the door still being relatively largewhen compared to states near the

key. Thus, the corresponding exploration bonuses for backtracking

are lower than those for remaining near the key. Therefore, if the

environment terminated after a single life, this method would never

learn to leave the first room. This phenomenon is illustrated in our

single-life MR results in Figure 5. Similarly, in Venture once the IM

agent has collected an item from one of the rooms, the novelty of

that room encourages it to remain in that room instead of collecting

all four items and thereby completing the level. In contrast, our

method allows the agent to learn a different policy before it collects

the key or item and after, in order to systematically find the key or

item and explore farther without dying.

Schema Networks [8] used a model-based, object-oriented ap-

proach to improve knowledge transfer across similar Atari do-

mains, requiring much less experience to perform well in the novel

domains. This method, however, is not able to learn from high-

dimensional image data and provides no evidence of improving

performance on long-horizon domains.

3 FRAMEWORK AND NOTATION
The domains considered in this work are assumed to be Markov

Decision Processes (MDPs), defined as the tuple:

⟨S,A,R,T , E⟩ (1)



where S is a set of states, A is a set of actions that can be taken,

R(s,a, s ′) is a function representing the reward incurred from tran-

sitioning from state s to state s ′ by taking action a, T(s,a, s ′) is
a function representing the probability of transitioning from s to
s ′ by taking action a, and E ⊂ S is a set of terminal states that,

once reached, prevent any future action. Under this formalism, an

MDP represents an environment which is acted upon by an agent.

The agent takes actions from the set A and receives a reward and

an updated state from the environment. In reinforcement-learning

problems, agents aim to learn policies, π (s) : S → A , to maximize

their reward over time. Their success at this is typically measured

as the discounted reward or value of acting under a policy from a

given state:

V (s) = E
[
rt + γrt+1 + γ

2rt+2 + · · ·
��π ] (2)

where the (rt ) is a sequence of random variables representing the

reward of an agent acting under policy π over time, and γ ∈ (0, 1)
is a discount factor applied to future reward-signals.

To allow our agent to learn and plan on an abstract level, we

employ the Abstract Markov Decision Process (AMDP) formal-

ism presented in Gopalan et al. [7]. An AMDP is a hierarchy of

MDPs allowing for planning over environments at various levels

of abstraction. Formally, a node in this hierarchy is defined as an

augmented MDP tuple:

⟨ ˜S, Ã, ˜T , ˜R, ˜E, F ⟩.

where
˜S, Ã,

˜T , ˜R and
˜E mirror the standard MDP components

defined in Eq. 1, F : S → ˜S is a state projection function that maps

lower-level states in S to their abstract representations one-level

above in the hierarchy,
˜S, and every ã ∈ Ã represents another

augmented MDP or a base environment action.

As a concrete example, consider an environment containing four

connected rooms. A simple two-tiered AMDP hierarchy might treat

entire rooms as abstract states that can be transitioned between.

Each action at the high-level would be a low-level MDP with the

goal of transitioning from one room to the next. The action-set

for these MDPs would be environment-level actions (such as UP,

DOWN, LEFT, RIGHT) and a reward function would be 1 for a

successful transition and a 0 otherwise.

4 MODEL
We now describe our hierarchical system for learning agents that ex-

hibit long-term plans. Our approach involves learning two coupled

agents simultaneously: a high-level L1-agent and a low-level L0-
agent. The AMDP framework allows for more levels of abstraction,

but we think 2 levels of abstraction is sufficient for our domains.

The L0-agent operates on states received directly from the envi-

ronment and the L1-agent operates on an abstraction provided by

the experimenter. This abstraction is intended to be coarse, meaning

that only limited information about the environment is provided

to the L1-agent and many environment states cluster into a sin-

gle L1 state. The coarseness of the abstraction allows for minimal

engineering on the part of the experimenter. We use the AMDP

formalism described above, defining the L1-agent’s environment as

the MDP, ⟨ ˜S, Ã, ˜T , ˜R, ˜E⟩, and the L0-agent’s environment as the

MDP, ⟨S,A,T ,R, E⟩. We also denote the state projection function

mapping L0-states to corresponding L1-states as F : S 7→ ˜S.

4.1 Abstract States and Actions
To allow our agent to plan at a higher level, we project the ground

level states (e.g. Atari frames) into a much lower-dimensional ab-
straction for the L1-agent. Similar to Object Oriented MDPs [6], the

L1-agent’s abstraction is specified by: a set of abstract states fac-

tored into attributes that represent independent state components

and a set of predicate functions that are used to specify dependen-

cies or interactions between particular values of the attributes. This

information is provided to the agent in the form of a state projec-

tion function, F : S 7→ ˜S, which grounds abstract states to sets of

environment states. More precisely, let N ∈ Z+ be the number of

attributes in each abstract state,M ∈ Z+ be the number of predicate

functions and
˜S be the set of provided abstract states. For any s̃ ∈ ˜S

we will alternatively write (s̃1, . . . , s̃N ), to emphasize the N factors

of s . We write (p1, . . . ,pM ) to denote the M predicate functions,

where each pj : ˜S 7→ {0, 1} for j ∈ 1, . . . ,M . For example, the L1
state space for MR (an Atari navigation task with rooms, doors,

and keys) would consist of the attributes ⟨Agent loc⟩, ⟨Num keys⟩,
⟨i’th Key collected⟩, ⟨j’th Door unlocked⟩ and predicates

⟨Near uncollected i’th Key⟩, ⟨Near unlocked j’th Door⟩,
⟨Near locked j’th Door with key⟩ for all i and j.

This factorization prevents our state-action space from grow-

ing combinatorially in the number of objects. In an unfactored

domain, an action that is taken with the intent of transitioning

from state S1 to state S2 can be thought of symbolically as the or-

dered pair: (S1, S2). Since there is no predefined structure to S1 or
S2, any variation in either state, however slight, mandates a new

symbolic action. This is particularly expensive for agents acting

across multiple levels of abstraction that need to explicitly learn

how to perform each symbolic action on the low-level domain. We

mitigate this learning-cost through the factorization imposed by

our abstraction-attributes. For a given state (s̃1, . . . , s̃M ) ∈ ˜S, if we

assume that each si is independent then we can represent each

L1-action ã ∈ Ã as a the ordered set of intended attribute changes

by performing a. We refer to this representation as an attribute
difference and define it formally as a tuple withM entries:

Diff(s̃, s̃ ′)i ≜

{
(s̃i , s̃

′
i ) if s̃i , s̃

′
i

∅ else.
(3)

In practice, it is seldom the case that each of the abstract attributes

is completely independent. To allow for modeling dependencies

between certain attributes, we use the predicate functions described

above and augment our previous notion of L1-actions with inde-

pendent attributes, representing actions as tuples of attribute dif-

ferences and evaluated predicate functions: (Diff(s, s ′), p1(s), . . .,
pL(s)) ∈ Ã. In our example from above, this allows the agent to

have different transition dynamics for when the doors in the room

are open or closed or when the key in the room has been collected

or not. For rooms with no doors or keys, however, the transition

dynamics remain constant for any configuration of unlocked doors

and collected keys in the state.

4.2 Interactions Between L1 and L0 Agents
In order for the L0 agents to learn to transition between L1 abstract
states, we need to define the L0 reward function in terms of L1



abstract states. It is important to note that, much like in Kulkarni

et al. [9], the L1-agent operates at a different temporal scale than

the L0-agent. However, unlike Kulkarni et al. [9], the L0 and L1-
agents operate on different state-spaces, so we need to define the

reward and terminal functions for each. Suppose that the L1-agent

is in state s̃init ∈ ˜S and takes action ã ∈ Ã. Further suppose that

s̃
goal
∈ ˜S is the intended result of applying action ã to state s̃init.

This high-level action causes the execution of an L0-policy with

the following modified terminal set and reward function:

E
episode

= E ∪ {s ∈ S : F (s) , s̃init}

R
episode

(s,a, s ′) =

{
1 if F (s ′) = s̃

goal

0 else.

(4)

Notice that the L0 reward function ignores the ground-environment

reward function, R. This information is instead passed to the L1
reward function. Denote the rewards accrued overT steps of the L0-

episode as r̃ =
∑T
t=1 Rt , denote whether the L0-environment termi-

nated as ẽ , and denote the final L0-state as sterm. At the termination

of the L0-episode, these quantities are returned to the L1-agent to
provide a complete experience tuple ⟨s̃init, ã, r̃ , F (sterm), ẽ⟩.

5 LEARNING
In the previous sections, we defined the semantics of our AMDP

hierarchy but did not specify the precise learning algorithms to

be used for the L1 and L0-agents. Indeed, any reinforcement learn-

ing algorithm could be used for either of these agents since each

operates on a classical MDP. In our work, we chose to use a deep

reinforcement learning method for the L0 learner to process the

high-dimensional pixel input and a model-based algorithm for the

L1 learner to exploit its long-term planning capabilities.

5.1 Low Level Learner
As described above, every transition between two L1 states is repre-
sented by an L0 AMDP. So, if there are multiple hundred L1 states
and each one has a few neighboring states, there could be hun-

dreds or thousands of L0 AMDPs. Each L0 AMDP could be solved

using a vanilla DQN, but it would take millions of observations

to train each one to learn since every DQN would have to learn

from scratch. To avoid this high computational cost, we share all

parameters, except for those in the last fully connected layer of our

network, between policies. For each policy we use a different set

of parameters for the final fully connected layer. This encourages

sharing high-level visual features between policies and imposes

that the behavior of an individual L0-policy is specified by these

interchangeable, final-layer parameters. In our implementation, we

used the Double DQN loss [14] with the Mixed Monte-Carlo update

as it has been shown to improve performance on sparse-reward

domains [12].

Because we share all layers of the network between the DQNs,

updating one network could change the output for another. This

can sometimes lead to forgetting policies. To correct for this, we

use an ϵ-greedy policy where we dynamically change epsilon based

on how successful the L0 AMDP is. We measure the success of each

L0 AMDP by periodically evaluating them (by setting ϵ = 0.01)

and measuring the number of times the policy terminates at the

goal state, s̃дoal . We then set ϵ equal to 1 minus the proportion of

Algorithm 1 Object-Oriented AMDP algorithm

1: procedure Learn
2: S,A ← ∅

3: while training do
4: s ← current environment state

5: if s < S then
6: Add_State(s)
7: end if
8: a ← argmaxa (Q(s,a))
9: s ′, r , t ← perform action a
10: dr esult ← Diff(s, s ′)
11: if (dr esult ,p1(s ′), . . . ,pL(s ′)) < A then
12: Add_Action(dr esult ,p1(s

′), . . . ,pL(s
′))

13: end if
14: add ⟨s,a, s ′, r , t⟩ to transition table

15: run Value_Iteration
16: end while
17: end procedure
18: procedure Value_Iteration
19: for Some number of steps do
20: for s ∈ S do
21: for a ∈ all applicable actions for s do
22: s ′ ← apply Diff of a to s
23: Qt (s,a) ←

∑
dj ∈N (a) T(a,dj )[R(a,dj ) +

γVt−1(s)(1 − E(a,dj ))] ▷ Bellman update

24: end for
25: Vt (s) ← maxa (Qt (s,a))
26: end for
27: end for
28: end procedure

the time the L0 AMDP succeeds when evaluated (with a minimum

epsilon of 0.01). We found this allows the agent to keep exploring

actions that were not yet learned or have been forgotten, while

exploiting actions that have already been learned. However, when

the transition cannot be consistently completed by a random policy,

this method tends to fail.

5.2 High Level Learner
For our L1-agent, we use a tabular R-Max learning agent [4]. We

chose this reinforcement learning algorithm for our L1-agent as
it constructs long-term plans to navigate to under-explored states.

Particularly, every action ã ∈ Ã is given an R-Max reward until that

action has been tried some number of times. We chose 100 for this

number to ensure that a random policy could discover all possible

next abstract states.

It is possible for L1 actions to continue running forever if the

agent never transitions between L1 states. Thus, in practice we only

run an L1 action for a maximum of 500 steps.

5.3 Exploration for L1 and L0 Agents
In this work, we assume the agent is given only the state projection

function, F , minimizing the work the designer needs to do. However,

this means that the agent must learn the transition dynamics of the

L1 AMDP and build up the hierarchy on-the-fly.



Figure 1: Example of a non-Markovian abstraction. The tran-
sition dynamics of room A depend on the side from which
the agent enters the room.

To do so, our agent begins with an empty set of states and actions,

˜S and Ã. Because we do not know the transition graph, every state

needs to be sufficiently explored in order to find all neighbors. To

aid in exploration, we give every state an explore action, which is

simply an L0 AMDP with no goal state. Whenever a new state-state

transition is discovered from s̃1 to s̃2, we add a new L1 AMDP action

with the initial state s̃1 and goal state s̃2 to Ã. In practice, we limit

each explore action to being executed N
explore

times. After being

executed N
explore

times, we remove that explore action, assuming

that it has been sufficiently explored. We use N
explore

= 100 in our

experiments. The pseudo code is detailed in Algorithm 1.

6 CONSTRUCTING AN ABSTRACTION
The main benefit of our abstractions is to shorten the reward hori-

zon of the low-level learner. The guiding principal is to construct

an abstraction such that L1-states encompass small collections of

L0-states. This ensures that the L0-agents can reasonably experi-

ence rewards from transitioning to all neighboring L1-states. It is
crucial that the abstraction is as close to Markovian as possible: the

transition dynamics for a state should not depend on the history of

previous states. For example, imagine a four rooms domain where

room A connects to rooms B and C (Figure 1). If for some reason

there is an impassable wall in room A, then the agent can transition

from A to B on one side of the wall and from A to C on the other

side. So depending on how the agent entered the room (the history),

the transition dynamics of room A would change. However, since

the high-level learner has seen the agent transition from room B to

A and A to C, it would think B and C are connected through A. The

solution would be to divide room A into two smaller rooms split

by the impassable barrier.

In our experiments, we split rooms up into smaller sectors in the

abstraction to decrease the horizon for the L0 learners and, in some

games, to retain the Markovian property of the abstraction. For Toy

MR, these sectors were hand-made for each of the rooms (Figure

2c). We constructed the sectors such that there were more sectors

on the “tight-ropes,” areas that required many correct actions to

traverse and a single incorrect action would result in a terminal

state. For the Atari experiments, we made square n×n grids of each

of the rooms based on the coordinates of the agent: if the agent is

in the top left corner of the screen, it is in sector 1. If it is in the

bottom-right corner, sector n2 (Figure 3). For MR, we chose the

grid to be 3 × 3. For Venture, we chose the grid to be 3 × 3 inside

each of the rooms and 4× 4 in the hallway, as the state-space in the

hallway is much larger. We chose this particular gridding because it

is both simple to implement and approximately Markovian across

the game’s different rooms. Note that any sufficiently fine-grained

sector scheme would perform equivalently. Accordingly, our partic-

ular choice of sector scheme should be regarded as arbitrary. Other

abstractions could be used as long as they are also approximately

Markovian.

7 EXPERIMENTS
The aim of our experiments was to assess the effectiveness of our

algorithm on complex domains that involve long horizons, sparse

rewards, and high-dimensional inputs. We trained our agents for

50 million frames. As in Mnih et al. [11], every one million frames,

we evaluated our agents for a half a million frames, recording the

average episode reward over those evaluation frames. The source

code of our implementation is available online
1
.

7.1 Baselines
We chose two baselines to compare against our algorithm: Double

DQN [14] and Pseudo-Count based IM [3], both using the Mixed

Monte-Carlo return [12]. We chose Double DQN as it performed

very well on many Atari games, but has not been optimized for

exploration. We chose the IM agent as it explored the highest the

number of rooms in Montezuma’s Revenge to the best of our knowl-

edge. One of the key aspects to the success of this algorithm, that

was not required for our algorithm, was giving the agent multi-

ple lives, which was discussed in our Related Work section. We,

therefore, also compared to the IM agent with this addition.

We tested our algorithm against these baselines in three different

domains. It is important to note that we do provide the factorized

state projection function and the set of predicate functions. How-

ever, in many real world domains, there are natural decompositions

of the low-level state into abstract components, such as the current

room of the agent in the room navigation task.

For the toy domains and Single-Life MR (described below) we

used our own implementation of pseudo-counts [3] as the authors

were unwilling to provide their source code. Our implementation

was not able to perform at the level of the results reported by Belle-

mare et al., only discovering 7-10 rooms on Atari Montezuma’s

Revenge in the time their implementation discovered 15 (50 million

frames). Our implementation still explores more rooms than our

baseline, Double DQN, which only discovered 2 rooms. We con-

tacted other researchers who attempted to replicate these results,

and they were likewise unable to. Bellemare et al., however, did

kindly provide us with their raw results for Montezuma’s Revenge

and Venture. We compared against these results, which were av-

eraged over 5 trials. Due to our limited computing resources, our

experiments were run for a single trial.

7.2 Four Rooms and Toy Montezuma’s
Revenge

We constructed a toy version of the room navigation task: given

a series of rooms, some locked by doors, navigate through the

rooms to find the keys to unlock the doors and reach the goal room.

In this domain, each room has a discrete grid layout. The rooms

consist of keys (gold squares), doors (blue squares), impassible

walls (black squares), and traps that end the episode if the agent

1
Code: github.com/chrisgrimm/deep_abstract_q_network



runs into them (red squares). The state given to the agent is the

pixel screen of the current room, rescaled to 84x84 and converted

to gray-scale. We constructed two maps of rooms: Four Rooms
and Toy Montezuma’s Revenge (Toy MR). Four Rooms consists of

three maze-like rooms and one goal room (Figure 2b). Toy MR

consists of 24 rooms designed to parallel the layout of the Atari

Montezuma’s Revenge (Figure 2c). In the Four Rooms domain, the

game terminates after 10 000 steps, while in Toy MR, there is no

limit on the number of steps.

The abstraction provided to the agent consists of 10 attributes:

the location of the agent, a Boolean for the state of each key (4 keys

total) and each door (4 doors total), and the number of keys the

agent had. The location of the agent consists of the current room

and sector. We used sectors for Toy MR to decrease the horizon

for each L0 learner (as detailed in the Section 6), but not for Four

Rooms since it does not have deadly traps that hinder exploration.

Although the sectors seem to divide much of the state-space, the

low-level learners remain crucial to learning the policies to navigate

around traps and transition between high-level states.

(a) Example Screen (b) Map of Four Rooms

(c) Map of all rooms in Toy MR with color-coded sectors

Figure 2: 2a Example screen that is common across Four
Rooms and Toy MR. The yellow square at the top left repre-
sents that the agent is holding a key and the green bar on the
right represents the agent’s remaining lives. 2b, 2c The map
of all the rooms in Four Rooms and Toy MR. Blue squares
are locked doors, yellow squares are keys that can unlock
the doors, and the red squares are traps that result in a ter-
minal state (or the loss of a lifewhen playingwith lives). The
teal room with the ‘G’ is the goal room. Entering this room
gives the agent a reward of 1 (the only reward in the game)
and results in a terminal state. The sectors provided to the
agent in Toy MR are color-coded.

Our results (Four Rooms and Toy MR plots in Figure 5) show

that for both domains, Double DQN and the IM agent failed to

(a) MR (b) MR Sectors

(c) Venture (d) Venture Sectors

Figure 3: 3a, 3c Example screens of Atari 2600 Montezuma’s
Revenge (MR) andVenture. 3b, 3d Illustrations of the sectors
we constructed for both a room in MR and the hallway in
Venture. The sector the agent is currently occupying is in
blue, the other possible sectors are in yellow.

learn to complete the game, while our agent learned to consistently

solve both toy problems. On the Toy MR domain, both agents fail

to escape the first room when the agent is only provided one life.

This reflects the issue with pseudo-counts for IM that we described

previously: that the image is factored in a way that makes the key

and agent pixels independent, with the result that the exploration

bonuses of backtracking to the doors are lower than those of re-

maining near the key. In contrast, our agent was not only able to

explore all the rooms in Toy MR, but also to learn the complex task

of collecting the key to unlock the first room, collecting two more

keys from different rooms and then navigating to unlock the final

two doors to the goal room (Figure 4).

We emphasize that this marked difference in performance is due

to the different ways in which each method explores. Particularly,

our DAQN technique is model-based at the high-level, allowing

our coupled agents to quickly generate new long-term plans and

execute them at the low-level. This is in contrast to IM, which must

readjust large portions of the network’s parameters in order to

change long-term exploration policies.

7.3 Montezuma’s Revenge Atari 2600
Montezuma’s Revenge (MR) is an Atari game very similar to the

rooms and doors toy problems: there is a series of rooms, some

blocked by doors, and keys are spread throughout the game. There

are also monsters to avoid, coins that give points, and time-based

traps, such as bridges over lava pits that disappear and reappear on

a timer.



Figure 4: Rooms discovered in the ToyMR domain using the
Double DQN, DAQN, IM, and IMwith a 5-lives variant of Toy
MR (Intrinsic+L).

Our abstraction had a similar state-space to Toy MR, consisting

of 12 attributes: the location of the agent, a Boolean attribute for

the presence of each key (4 keys total) and each door (6 doors total),

and the number of keys. The location of the agent consists of the

current room and sector. We created coarse sectors based on the

agent’s location in a room by gridding each room into nine equal

square regions. We prevented sector transitions while the agent

was falling to avoid entering a sector and immediately dying from

falling. As an example, consider the agent in Figure 3a. Figure 3b

illustrates the sector that the agent occupies. The abstraction of

this state would be: Room 1 (the starting room) and Sector (1, 2)

with no keys collected or doors unlocked.

We also tested the DAQN on MR where the agent is only given

a single life (i.e. the environment terminates after a single death).

Normally in MR, when the agent dies, it returns to the location

from which it entered the room (or the starting location in the first

room) and retains the keys it has collected. Because of this, a valid

policy for escaping the first room is to navigate to the key, collect

it, and then purposefully end the life of the agent. This allows the

agent to return to the starting location with the key and easily

navigate to the adjacent doors. In this single life variant, the agent

cannot exploit this game mechanic and, after collecting the key,

must backtrack all the way to the starting location to unlock one

of the doors. This comparison illustrates our algorithm’s ability to

learn to separate policies for different tasks.

With lives, our algorithm did not discover as many rooms as the

IM agent since our agent was not able to traverse the timing-based

traps. These traps could not be traversed by random exploration, so

our agent never learned that there is anything beyond these traps.

Our agent discovered six rooms out of the total 24 – all the rooms

that can be visited without passing these traps.

Our agent underperformed in Atari Montezuma’s Revenge (Mon-

tezuma’s Revenge plot in Figure 5) because of timing based traps

that could not be easily represented in a discrete high-level state

space. However, when we grant our agent only one life, our method

greatly outperforms previous methods: not only was our agent able

to escape the first room, but it also discovered five more, while the

Double DQN and IM agents are not able to escape the first room

(Single-Life MR plot in Figure 5). This is because the one-life setting

necessitates backtracking-like behavior in a successful policy. As

we mentioned before, the IM agent is incapable of learning to back-

track and thus cannot perform in this setting. We emphasize that

this inability arises on account of the pseudo-count probabilistic

model treating the location of the agent and the presence of the

key as independent. This property actively discourages the agent

from backtracking because backtracking would lead to states with

higher pseudo-counts and, thus, less intrinsic reward.

7.4 Venture Atari 2600
Venture is a game that consists of four rooms and a hallway. Every

room contains one item. The agent must navigate through the

hallway and the rooms, avoiding monsters, to collect these items.

Once an item is collected and the agent leaves the room, that room

becomes locked.

Our abstraction for this game consisted of 9 attributes: the lo-

cation of the agent, a Boolean locked attribute for each room (4

rooms total), and a Boolean for whether the item in the current

room has been collected (4 items total). The location of the agent

consists of the current room and sector. Sectors were constructed

with a coarse 3 × 3 gridding of each room and a 4 × 4 gridding of

the hallway. As an example, in Figure 3c the agent is the the small

pink dot at the bottom of the screen and Figure 3d shows the sector

the agent occupies. In this state, the abstraction would be: Room 8

(the hallway) and Sector (1, 0) with no items collected.

In this experiment, we receive a much higher evaluation per-

formance than both of our baselines (Venture plot in Figure 5),

illustrating our agents ability to execute and learn long-term plans.

At around 30 million frames, our agent’s performance greatly de-

creases. This performance drop is due to our agent exploring further

into new rooms and training the sub-policies to reach those new

rooms. Since the sub-policies for exploitation are not trained during

this time, as the DQNweights higher up in the network are updated

to train the exploration sub-policies, the exploitation sub-policies

are forgotten. Once the agent finishes exploring all L1 states, we
would expect the agent would revisit those exploitation sub-policies

and relearn them.

8 DISCUSSION AND FUTUREWORK
In this paper, we presented a novel way of combining deep re-

inforcement learning with tabular reinforcement learning using

DAQN. The DAQN framework generally allows our agent to ex-

plore much farther than previous methods on domains and exploit

robust long-term policies.

In our experiments, we showed that our DAQN agent explores

farther in most high-dimensional domains with long-horizons and

sparse reward than competing approaches. This illustrates its ca-

pacity to learn and execute long-term plans in such domains, suc-

ceeding where these other approaches fail. Specifically, the DAQN

was able to learn backtracking behavior, characteristic of long-term

exploration, which is largely absent from existing state-of-the-art

methods.

The main drawback to our approach is the requirement for a

hand-annotated state-projection function that nicely divides the

state-space. However, for our method allows this function need

only specify abstract states, rather than abstract transitions or poli-

cies, and thus requiring minimal engineering on the part of the

experimenter. In future work, we hope to learn this state-projection

function as well. We are exploring methods to learn from human



Figure 5: Average reward in the Four Rooms, Toy MR, Atari MR, Single-Life Atari MR, and Atari Venture domains using the
following models: DAQN (blue), Double DQN (green) and IM (orange). In Four Rooms and Toy MR, both IM and Double DQN
fail to score an average reward above zero, and are thus overlapping. We use the raw IM and Double DQN data from Bellemare
et al. [3] on Montezuma’s Revenge and Venture. All other plots show our implementations’ results.

demonstration, as well as methods that learn only from a high-level

reward function. Ultimately, we seek to create compositional agents

that can learn layers of knowledge from experience to create new,

more complex skills. We also plan to incorporate a motivated ex-

ploration algorithm, such as IM [3], with our L0 learner to address

our difficulty with time-based traps in MR.

Our approach also has the ability to expand the hierarchy to

multiple levels of abstraction, allowing for additional agents to learn

evenmore abstract high-level plans. In the problemswe investigated

in this work, a single level of abstraction was sufficient, allowing our

agent to reason at the level of rooms and sectors. However, in longer

horizon domains, such as inter-building navigation and many real-

world robotics tasks, additional levels of abstraction would greatly

decrease the horizon of the L1 learner and thus facilitate more

efficient learning.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science

Foundation under grant numbers IIS-1426452, IIS-1652561, and

IIS-1637614, DARPA under grant numbers W911NF-10-2-0016 and

D15AP00102, and National Aeronautics and Space Administration

under grant number NNX16AR61G.

REFERENCES
[1] Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The Option-Critic Archi-

tecture.. In AAAI. 1726–1734.
[2] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. 2013. The Arcade Learning

Environment: An Evaluation Platform for General Agents. Journal of Artificial
Intelligence Research 47 (jun 2013), 253–279.

[3] Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David

Saxton, and Rémi Munos. 2016. Unifying Count-Based Exploration and Intrinsic

Motivation. In NIPS.
[4] Ronen I Brafman and Moshe Tennenholtz. 2002. R-max-a general polynomial

time algorithm for near-optimal reinforcement learning. Journal of Machine
Learning Research 3, Oct (2002), 213–231.

[5] Thomas G Dietterich. 2000. Hierarchical reinforcement learning with the MAXQ

value function decomposition. J. Artif. Intell. Res.(JAIR) 13 (2000), 227–303.
[6] Carlos Diuk, Andre Cohen, and Michael L Littman. 2008. An object-oriented

representation for efficient reinforcement learning. In Proceedings of the 25th
international conference on Machine learning. ACM, 240–247.

[7] Nakul Gopalan, Marie desJardins, Michael L. Littman, James MacGlashan, Shawn

Squire, Stefanie Tellex, John Winder, and Lawson L.S. Wong. 2017. Planning with

Abstract Markov Decision Processes. In International Conference on Automated
Planning and Scheduling.

[8] Ken Kansky, Tom Silver, David AMély, Mohamed Eldawy,Miguel Lázaro-Gredilla,

Xinghua Lou, Nimrod Dorfman, Szymon Sidor, Scott Phoenix, and Dileep George.

2017. Schema Networks: Zero-shot Transfer with a Generative Causal Model of

Intuitive Physics. arXiv preprint arXiv:1706.04317 (2017).

[9] Tejas D. Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Joshua B. Tenen-

baum. 2016. Hierarchical Deep Reinforcement Learning: Integrating Temporal

Abstraction and Intrinsic Motivation. In NIPS.
[10] Amy McGovern, Richard S Sutton, and Andrew H Fagg. 1997. Roles of macro-

actions in accelerating reinforcement learning. In Grace Hopper celebration of
women in computing, Vol. 1317.

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

Nature 518, 7540 (2015), 529–533.
[12] Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Rémi Munos.

2017. Count-based exploration with neural density models. arXiv preprint
arXiv:1703.01310 (2017).

[13] Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and

semi-MDPs: A framework for temporal abstraction in reinforcement learning.

Artificial intelligence 112, 1-2 (1999), 181–211.
[14] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement

Learning with Double Q-Learning.. In AAAI. 2094–2100.
[15] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max

Jaderberg, David Silver, and Koray Kavukcuoglu. 2017. FeUdal Networks for

Hierarchical Reinforcement Learning. In ICML.


	Abstract
	1 Introduction
	2 Related Work
	3 Framework and Notation
	4 Model
	4.1 Abstract States and Actions
	4.2 Interactions Between L1 and L0 Agents

	5 Learning
	5.1 Low Level Learner
	5.2 High Level Learner
	5.3 Exploration for L1 and L0 Agents

	6 Constructing an Abstraction
	7 Experiments
	7.1 Baselines
	7.2  Four Rooms and Toy Montezuma's Revenge 
	7.3 Montezuma's Revenge Atari 2600
	7.4 Venture Atari 2600

	8 Discussion and Future Work
	Acknowledgments
	References

