
Robotics: Science and Systems 2020
Corvalis, Oregon, USA, July 12-16, 2020

1

Grounding Language to Non-Markovian Tasks with
No Supervision of Task Specifications

Roma Patel, Ellie Pavlick and Stefanie Tellex

Abstract—Natural language instructions often exhibit sequen-
tial constraints rather than being simply goal-oriented, for
example “go around the lake and then travel north until the
intersection”. Existing approaches map these kinds of natural
language expressions to Linear Temporal Logic expressions but
require an expensive dataset of LTL expressions paired with
English sentences. We introduce an approach that can learn
to map from English to LTL expressions given only pairs of
English sentences and trajectories, enabling a robot to under-
stand commands with sequential constraints. We use formal
methods of LTL progression to reward the produced logical
forms by progressing each LTL logical form against the ground-
truth trajectory, represented as a sequence of states, so that no
LTL expressions are needed during training. We evaluate in two
ways: on the SAIL dataset, a benchmark artificial environment
of 3,266 trajectories and language commands as well as on 10
newly-collected real-world environments of roughly the same size.
We show that our model correctly interprets natural language
commands with 76.9% accuracy on average. We demonstrate the
end-to-end process in real-time in simulation, starting with only a
natural language instruction and an initial robot state, producing
a logical form from the model trained with trajectories, and
finding a trajectory that satisfies sequential constraints with an
LTL planner in the environment.

I. INTRODUCTION

A typical instruction following task is challenging for two
reasons. First, the complex (e.g., temporal, sequential, condi-
tional) constraints have to be represented in the form of logical
goal specifications that state-of-the-art planners can take in.
Assuming that these logical forms accurately represent the
meaning of the natural language instruction, the planner has
to temporally keep track of intermediate constraints while also
reaching the final goal. The first problem can be resolved if
we learn to parse natural language to more complex logical
forms like Linear Temporal Logic (LTL) [8, 31] thus allowing
the second planning problem to be solved by building LTL
planners [18, 19, 31] that can find a path in the environment
to satisfy the required temporal constraints. However, the
semantic parsing problem in itself is extremely challenging,
typically requiring paired data of language and LTL to train
models to learn this translation function. This is data that is
expensive to collect (in terms of time and money spent per
task), difficult to collect (in terms of worker inaccuracies for
this complex task) and moreover, models trained in this way
are extremely brittle and fail to generalise to samples different
from those seen during training [19, 28].

The authors are affiliated with the Brown University Department of
Computer Science, 115 Waterman Street, Providence, RI 02912. Email:
{romapatel, ellie pavlick}@brown.edu, stefie10@cs.brown.edu

Fig. 1. Navigational instructions are often path-oriented and depend on
intermediate states rather than just dependent on the final goal state. While
all paths in the figure reach the goal, only the blue correctly follows the
specified temporal constraints. Our model can learn to map English to LTL
expressions that satisfy the constraints with no LTL at training time.

To address this, we propose to learn a semantic parsing
model that does not require paired data of language and
LTL logical forms, but instead learns from trajectories as a
proxy. To collect trajectories on a large scale over a range
of environments, we use path-finding algorithms to simulate
trajectories in each environment. We then ask humans to
annotate these trajectories with natural language instructions,
creating datasets of language paired with trajectories in each
environment. To validate the model-produced logical forms
with trajectories, we use formal methods of LTL progres-
sion [8, 40], to check satisfiability of logical forms against
ground-truth paths. Once the trained model can produce these
grounded LTL representations, we then use a planner with
LTL-based rewards to follow the instruction. Our framework
enables a robot to learn to map between language and LTL
expressions with no LTL annotations required during training;
only a dataset of English and trajectories, as well as a model of
the environment. We test our approach on a test set of unseen
natural language instructions in each environment. We evaluate
on our newly collected range of different environments with
natural language annotations, as well as an existing benchmark
dataset [32], using metrics for path and goal-state accuracy.

In this paper we present three main contributions. First,
we ground natural language instructions to temporal logi-
cal form with no supervision of ground-truth logical forms.
Second, our use of LTL as a meaning representation not

only allows handling of temporal ordering but also enables
the use of formal methods of progression that allow a more
efficient feedback mechanism than previous approaches. Third,
we test the generalisability of this method in more than
10 different environments (both artificial and real-world) by
annotating trajectores with natural language instructions in
each environment. We release this data as well as the data-
collection procedure to algorithmically simulate paths in large
environments. We see the benefits of using a more expressive
language such as LTL in instructions that require temporal
ordering, and also see that the path taken with our approach
more closely follows constraints specified in natural language.
This dataset consists of 10 different environments, with up to
2,458 samples in each environment, giving us a total of 18,060
samples. To the best of our knowledge this is the largest dataset
of temporal commands in existence.

II. RELATED WORK

In the semantic parsing literature, previous work has ex-
plored weak supervision methods to ground natural language
to lambda calculus expressions or SQL queries for retrieval
tasks. Related to navigation, previous work [4, 26] has ex-
plored weakly supervised semantic parsing models. However,
these ground to lambda calculus expressions and logical forms
that do not handle temporal order in the way that LTL does.
To the best of our knowledge, there is currently no work that
attempts to ground natural language to temporal logic without
supervision of logical forms during training.

LTL has been explored in the RL literature, to formulate
tasks, either by creating reward functions that maximise the
probability of satisfying the LTL formula [31, 41] or by
guiding policy search with a measure of distance to satisfaction
of the task [29]. Other work exploits the structure of LTL to
decompose tasks into subtasks [40] to deal with temporal ab-
straction. Below, we enumerate the different avenues explored
by previous instruction following methods.

a) Language → Logical Form: There is ample prior
work on supervised semantic parsing to logical forms other
than LTL [6, 39, 43, 44] as well as to LTL [19], however all of
these require paired data of language and logical form to train
models. Other weakly-supervised work learns semantic parsers
without explicit annotation of logical forms, by allowing the
execution of learned logical forms to act as supervision in
varying domains e.g., conversational logs [3], system demon-
strations [4, 13, 17, 42] and question-answer pairs [14, 30].
However, these are all unrelated to navigation and planning,
and the weak supervision required is much simpler, usually
requiring one execution (e.g., against a database) as opposed
to a longer sequence of executions (e.g., a trajectory in an
environment). Most relevant to our work is the model of Artzi
and Zettlemoyer [4], however our work is different in that
it grounds to LTL (rather than CCG expressions) and also
provides a more efficient feedback mechanism making use of
LTL progression.

b) Language → Plan: Also relevant is the body of
work which seeks to map natural language directly to action

sequences, e.g. [7, 15, 33, 34]. Such methods are typically
trained end-to-end, and do not pass through an explicit in-
termediate logical form, as we do in this work. Having an
intermediate logical form can help interpretability and ensure
correctness, by first representing intended semantic meaning.
It also helps generalisability in different domains as opposed to
sequence-to-sequence models trained to produce paths in one
environment that cannot generalise or exhibit compositionality
[25, 28].

c) Logical Form (LTL) → Plan: Assuming we have
correct logical goal specifications, there is ample work that
explores how to plan and solve tasks temporally in envi-
ronments. Previous work [8, 19, 31] has used planners in
combination with LTL rewards to keep track of previous states.
Recent approaches have used Deep Q-Networks with LTL
specifications [40], by making use of LTL based rewards [31]
where the input to the Q-value function is both the state
and progressed LTL task. Other work uses hierarchical RL
methods [27, 38] in the options framework, by creating one
option per proposition with terminal states defined by states in
which the proposition is true; giving the state and progressed
LTL task as input to a meta-controller. While this line of work
highlights the benefits of LTL for temporal abstraction, it does
not deal with natural language, but focuses on task-solving
when given the logical representations. It is therefore separate
from the language grounding task that first attempts to convert
natural language into representations that these methods can
take in.

III. LINEAR TEMPORAL LOGIC

In this section we explain the preliminaries of Linear
Temporal Logic, the logical formalism into which we parse
each natural language instruction. We go over the syntax and
the semantics of the language and how they can be used
in correspondence with states in an environment. We show
how these semantics can be used for progression to check
satisfiability of an LTL expression against a sequence of states
(i.e., a trajectory) in the environment. Given that our weakly-
supervised translation model does not have ground-truth LTL
data to train on, the LTL progression is what supervises each
logical form with a trajectory.

a) LTL Syntax: LTL has the following grammatical syn-
tax:

φ ::= π | ¬φ | φ ∧ ϕ | φ ∨ ϕ | � φ | 2φ | © φ | φ U ϕ

where the operators ¬,∧,∨ are the logical connectives for
negation, and, or and the temporal operators are � for even-
tually, � for globally, U for until and © for next. Our
set of propositions P consists of observable elements in the
environment e.g., (at object, is intersection, is corridor). All
LTL expressions are constructed from the set P and the
extended set of operators defined above i.e., the Boolean
operators ∧,∨,¬ and the temporal operators ©,U. From
these we can define � (always) and � (eventually) for e.g.,
�φ = trueUφ.

b) LTL Semantics: Given the observable elements in the
environment that form atomic propositions, the truth value of
an LTL formula is determined relative to a sequence of truth
assignments σ =< σ1, σ2, σ3, ... > where each state σi assigns
a value of true or false to each proposition.

A proposition ρ ∈ σi indicates that the proposition ρ is
true in the state σi, thus allowing us to check existence of
propositions in states for progression functions in Table I.

c) LTL Progression: Given a sequence of truth assign-
ments and an LTL task specification, an LTL formula can
be progressed along the sequence. For example, the task
�(p ∧ © � q) (i.e., eventually p and eventually q) can be
progressed to �q (i.e., eventually q) once the agent reaches
a state where p is true. Table I shows how we define our
progression functions.

TABLE I
SEMANTICS OF LTL PROGRESSION FUNCTIONS.

prog(σi, p) true if p ∈ σi, where p ∈ P
prog(σi, p) false if p /∈ σi, where p ∈ P
prog(σi,¬φ) ¬prog(σi, φ)
prog(σi, φ1 ∧ φ2) prog(σi, φ1) ∧ prog(σi, φ2)
prog(σi, φ1 ∨ φ2) prog(σi, φ1) ∨ prog(σi, φ2)
prog(σi,©φ) φ
prog(σi,♦φ) trueU φ
prog(σi, φ1 Uφ2) prog(σi, φ2) ∨ (prog(σi, φ1)

∧ φ1 Uφ2)

IV. MODEL

In this section we describe the semantic parsing model
that takes in natural language instructions and converts them
to LTL expressions. Our model is based on previous work
[16, 20] which trains semantic parsers from denotations by
searching through a space of programs during training. How-
ever, applications of previous work were to ground language
to SQL queries or logical operators to be executed against
databases. We formulate this as a sequence prediction problem
by representing an LTL program as a sequence of atomic
propositions and operators in postfix notation. Each produced
LTL expression is given a binary reward by progressing it
along a ground-truth path. We explain the components of the
model below.

a) Program Representation: Every token in an expres-
sion is either an operator of fixed arity (i.e., one or two
arguments) or an atomic proposition. For example, the LTL
expression (a ∧ (� b)) converted to postfix notation a b
� ∧ can be realised in an environment where the propositions
correspond to locations. 1 This linearised representation allows
easier execution with a stack based on the semantics of oper-
ators and propositions as shown in Figure 2. The vocabulary
of atomic propositions is the set of all observable elements.
In the SAIL environment, the simulated environment we use

1We show example conversions as well as example decodings of our model
in attached supplementary material.

in Section V-A, this consists of e.g., stool, brick corridor..,
while in every real-world environment (see Section V-B) this
consists of actual landmarks at that location in the map e.g,
Harlow Square, MIT Museum for Cambridge, Massachusetts
or The Varsity Plaza, Bass Concert Hall for Austin, Texas.

Fig. 2. Using a stack for type-constrained decoding to ensure syntax of
produced logical forms.

b) Encoder and Decoder: Our training samples are of the
form (x, t) where x is a natural language instruction and t is a
trajectory in the environment. As in Guu et al. [20] our model
generates program tokens z1, z2.. from left to right using a
neural encoder-decoder model [37]. We encode every utterance
x with a bidirectional LSTM [21] to create a contextualised
representation hi for every input token xi. Our decoder is then
a feed-forward network with attention [5] over the output from
the encoder, that takes as input the last K decoded tokens.
Formally, the probability of a decoded LTL expression is the
product of the probability of its tokens conditioned on the
history i.e., pθ(z|x) =

∏
t pθ(zt|x, z1:t−1) and the probability

of a decoded token comes from the learned parameters and
embedding matrices. We keep track of the execution history
i.e., the k most recent tokens zt−k:t−1 and concatenate their
embeddings. While encoding, the input vocabulary consists
of all the words contained in the natural language utterances,
that are embedded with word vectors. While decoding, the
output vocabulary is composed of all the propositional symbols
(i.e., landmarks) in the environment as well as the operators
until, and, or, not, eventually, globally, next. As shown in
Figure 2 we use type-constrained decoding to ensure that the
decoded programs are syntactically correct, while the LTL
progression ensures that they are semantically correct, in that
they give a reward of 1 against the ground truth trajectory.
Using type-constrained decoding for the neural model ensures
that the space of logical forms explored are always syntac-
tically correct. Typical supervised methods would compare
each produced token with the ground-truth logical form to
ensure semantic correctness, however we do this in a weakly
supervised way, by progressing the final logical form against
the ground-truth trajectory in the environment.

c) Supervision: In a standard supervised setting, each
produced logical form could simply be compared to the ground
truth logical form in the data. In our weakly supervised
approach, we instead use trajectories to supervise the produced
logical forms during training. Each logical form gets a binary
(1 or 0) reward by progressing it along the ground-truth
trajectory, using the progression functions defined in Table I.
Specifically, for an LTL task φ and state σi, we can update
φ at each point in time i to reflect the parts of φ that have

Fig. 3. Search algorithm to produce logical programs.

been satisfied. We can do this because if a sequence of truth
assignments (i.e., a trajectory) satisfies an LTL formula at time
i, then the formula progressed through φi is satisfied at time
i+1. An exception to this is a global constraint e.g., “always
avoid A” that requires the condition to always be met and
cannot be progressed. We handle this by simply ensuring that
the constraint holds at every time step.

Fig. 4. Example of progression an ltl expression against a trajectory in the
environment. Semantics are as defined in Table I.

A. Training

To train the model, we randomly initialise model parameters
and optimise the objective function via stochastic gradient
ascent, following the same training procedure in Guu et al.
[20]. The token embedding size is 12, the beam size is 20
and the BiLSTM state dimensions are 30. The hidden state
dimension of the decoder is 50, and this takes in the encoder
representation, as well as the last 4 decoded tokens as input.
We use Adam [24] as an optimiser with a learning rate of
0.001. We use a mini-batch size of 8 and train for 40k
iterations to achieve the reported results. For a more detailed
explanation of the search algorithm and policy gradient up-
dates for the objective function, we refer readers to Guu et al.
[20].

B. Planning in an Environment

Once we produce LTL interpretations of instructions, we
use an LTL-based planner [] that takes in the LTL task
specification to find a path in the environment. Crucially, this
path not only reaches the final goal-state but also ensures that

Algorithm 1 Algorithm for Supervision with LTL Progression
1: Create training samples (u, t) of utterance and trajectory

pairs
2: Create LSTM encoder, feed-forward decoder, search algo-

rithm, reward function
3: Build environment representation with states composed of

landmarks
4: for each sample (u, t) do
5: e ← encoder(u) .. encode utterance with LSTM

encoder
6: program ← decoder(e) .. decode top k programs

with feed-forward decoder for beam size k
7: for each program p do
8: for each state s in t do
9: p′, a ← prog(p) .. progress the LTL expression

and return the updated expression p′ and the cur-
rent truth assignment a

10: end for
11: if a = True then
12: reward← 1
13: else
14: reward← 0
15: end if
16: Update reward(p) for programs
17: end for
18: end for

sequential constraints in the LTL formula are satisfied (e.g.,
first going to a certain location before reaching the goal). We
use an MDP planner, adapted for LTL, as described below.

a) Markov Decision Processes: A Markov Decision Pro-
cess (MDP) is a tuple M = (S,A, T,R, γ) where S and A
are a finite sets of states and actions, T : S×A×S → [0, 1] is
the transition function, R : S×A×S → Pr(R) is the reward
function and γ is the discount factor. An agent learns a policy
π i.e., a probability distribution over state-action pairs, that
allows it to determine the actions it should take in each state
with probability π(a|s).

b) Linear Temporal Markov Decision Processes: To plan
with temporal constraints, previous work combines the LTL
expression with the environment MDP in order to make an
expanded MDP that can keep track of the relevant parts of
the LTL state. A labelling function therefore annotates the
transitions with labels i.e., valid propositions for each state,
thus allowing the checking of satisfiability of LTL expressions.
These MDPs have previously been used for planning over an
MDP to satisfy an LTL formula [36]. Abstract Product MDPs
(AP-MDPs) [35] have been used to combine labelled MDPs
that can handle temporal expressions along with ones that can
solve tasks at different levels of state abstractions. This work
does not deal with different levels of abstraction, therefore we
only use a product MDP at the lowest level of abstraction i.e.,
the environment composed of individual grid cells.

Fig. 5. Examples of 4 different OSM maps in our data, with their corresponding number of landmarks available from the API.

V. ENVIRONMENTS AND DATA

To compare with state of the art and existing semantic
parsing models, we evaluate on SAIL [32] — a benchmark
artifical environment. SAIL is an existing dataset with 3,000
samples of instructions and trajectories.

While the language used is considerably complex, SAIL
contains very little temporal language (e.g., use of words like
until or multiple sequential constraints or landmarks to be
met). To properly test handling of temporal language, as well
as generalisability to real-world, environments, we also test
on language commands in 10 newly-collected real-word OSM
environments in different cities in the US. In all of these, our
model trains without supervision of ground truth logical forms,
requiring instead only example trajectories in the environment.

Here, we explain both environments and their complexi-
ties. Section V-A describes the artificial environment while
Sections V-B, V-B2, V-B3 and V-B4 describe the real-world
environments, as well as the methods we use to algorithmically
generate thousands of trajectories in OSM environments to
create large-scale datasets for training.

A. SAIL: A benchmark dataset for instruction following
SAIL, introduced in MacMahon et al. [32], is a navigation

dataset containing route instructions annotated with trajec-
tories for three different environments of varying size. An
environment is composed of connected hallways with different
floor patterns (grass, brick, wood, gravel, blue, flower, or yel-
low octagons), wall paintings (butterfly, fish, or Eiffel Tower)
and objects (hat rack, lamp, chair, sofa, barstool, and easel)
at intersections. In SAIL, the challenge of learning to ground
natural language stems from the fact that instructions given by
humans are complex, free-form and of variable length (either
3,266 single sentences in isolation or 706 full paragraphs).
While this task and dataset bear superficial similarity to others
[1, 9], the language and paths required here are quite different
— the proportion of instructions to actions is much higher,
the interpretation of language is highly compositional and
instruction length varies widely. SAIL has therefore been the
subject of focused attention in semantic parsing, resulting in
a range of different approaches that attempt to plan in such
settings.

B. Open Street Maps: Instruction following in real world
environments

1) Open Street Maps (OSM): We use Open Street Maps
(OSM), a global open-sourced map API where users can add

landmarks, as well as information about the landmarks that
are then verified. This therefore gives us access to real world
maps, names of landmarks and cartesian coordinates of their
locations. We query this semantic database to get maps for 10
cities across the US.

We chose cities across the US, in areas that have open
spaces and interesting landmarks or statues that can provide
referring expressions, e.g., around universities and parks. We
provide detailed examples, lists of cities, and landmarks within
cities in the supplementary material. Figure 5 shows examples
of pictures of the map in 4 different possible environments.

2) Converting Real World Maps to Underlying Graph
Structure: In order to convert dense OSM maps composed of
(latitude, longitude) pairs of points into a graphical structure
in which we can simulate paths, we use Voronoi cells [] to
partition the map. Given an OSM map composed of landmarks
in a 300m radius square, the map can be partitioned into
Voronoi cells as shown in Figure 6. This is done (as in
the original Voronoi implementation) by randomly generating
points inside the bounded region. Triangulation is done by
connecting each node to it’s nearest neighbours, forming a
network of triangles. The boundaries of Voronoi cells are then
formed by connecting perpendicular bisectors of triangles. []
shows that Voronoi-based enables faster and more efficient
planning over larger distances.

Fig. 6. Creating Voronoi diagrams and underlying connecting graphs of the
environment.

3) Algorithmic Simulation of Trajectories in Environments:
Most previous work (that is not concerned with large-scale tra-

jectory data collection) hand-annotates trajectories in graphs.
This collection of trajectories is then given to a human for an
annotation task, thus obtaining paired (language, trajectory)
data in an environment. When dealing with multiple large
environments, with thousands of trajectories per environment,
manually annotating trajectories quickly becomes infeasible.

Therefore, we instead simulate trajectories in the different
environments using path-sampling algorithms. Specifically,
given our environment graph that connects landmark nodes
to one another, we sample start and end nodes (s, e) from
a uniform distribution. We use a k-th shortest path sampling
algorithm (where k is sampled from a geometric distribution)
to obtain a path between between nodes s and e. It is crucial
to note that the paths obtained are therefore not always the
shortest path between two nodes — a bias that can be quickly
learned by models, that has been shown [22] to make them
ignore important components of the input (e.g., if agents
are trained on paths that are always the direct shortest path
between two nodes, there is no need for them to condition
on the natural language instruction, environment features and
so on). In this way, we obtain up to 3,000 algorithmically
simulated trajectories for each environment, distributed over
different start and end nodes. We ensure that the lengths of
the paths vary (i.e., are not all the same length) and that all
landmarks in the graph have been covered in a subset of the
trajectories.

Fig. 7. Algorithmic path simulation.

4) Collecting Natural Language Annotations for Environ-
ments: Once we can algorithmically simulate thousands of tra-
jectories in different environments, we collect natural language
instruction data for trajectories using Amazon Mechanical
Turk (AMT). Each AMT task consists of a picture of the
real-world OSM map, as well as two trajectories drawn in
different colours (blue and orange) on the graph of connecting
landmarks. The two different trajectories are obtained from
sampling from the k-th shortest paths, and we instruct workers
to give a natural language instruction that describes one of the
paths while specifically excluding the other as a possibility.
This therefore elicits language instructions specific to one of
the trajectories, ensuring that they refer to elements along
the target path. Moreover, sampling from the k-th shortest
trajectories ensures that the paths in our data are not always
shortest paths from the start to the end, a heuristic that neural
models have been shown to easily game [28]. We also provide
a map key with the list of landmarks in the map, to make

Algorithm 2 Algorithmically simulating trajectories
1: Initialise number of paths required
2: for each OSM map M do
3: V ← Voronoi(M) .. voronoi diagram of landmarks
4: G← Landmarks(V) .. graph with nodes as landmark

centers, edges as distances between landmarks
5: for i in num paths do
6: s ← random(G.nodes) .. randomly sample a

start node for path
7: e ← random(G.nodes) .. randomly sample an

end node for path
8: k ← random(geometric(p=0.2) .. sample k

from geometric distribution
9: paths ← dijkstra(s, e) .. find paths between

s and e from shortest to longest
10: path 1 ← paths[k] .. choose the kth shortest path

as the ground truth path
11: path 2 ← random(paths) .. randomly select an

alternative path different from the above
12: end for
13: end for

the task easier for workers. For each trajectory, we collect
3 different natural language commands, thus giving us an
average of 2,884 trajectories per environment, for 10 different
environments. To the best of our knowledge, this is the largest
collection of temporal data aimed at LTL, for real-world
environments.

VI. EXPERIMENTAL EVALUATION

In this section we explain the environments and evaluation
metrics, that attempt to evaluate not only the final goal loca-
tion, but the entire path. To compare to previous instruction-
following models on the benchmark set, we report goal-state
accuracy on SAIL, but also propose to evaluate path metrics,
to ensure that the entire trajectories are correct. We compare to
all past models that evaluated on SAIL, as reported for the test
set. To evaluate the real-world OSM environments, we report
goal-state accuracy as well as path accuracy, comparing to a
baseline that does not use LTL.

A. Evaluation Metrics

To evaluate models on the SAIL dataset, previous works
compare the agent’s end state to a labelled state s′ i.e., the
end point of the ground-truth trajectory, for all (single and
multi-sentence) instructions in the test set. As explained in this
section, we propose additional evaluation metrics to compare
the entire path rather than just the goal location.

To directly compare our approach with existing work, we
measure the goal-state accuracy i.e., the ability of the model to
reach the same location in the environment as the ground-truth
trajectory. Unlike prior work, we also propose a more fine-
grained analysis to evaluate path accuracy. Often times, the
path taken to reach the final goal location is crucial – especially
when the instruction specifies constraints on how to reach the

goal. A more specific analysis of the entire path is even more
important in complicated environments with several possible
paths that reach the goal. Metrics that only measure success
rate (i.e., reaching the final goal location) and disregard the
path taken will therefore not distinguish between such paths.
We therefore propose to evaluate correctness of the produced
paths in comparison to the ground-truth path. To evaluate the
sequences, we treat paths as vectors of indices in the grid world
and compute precision, recall, accuracy and edit distance to
the gold path. Paths that more closely follow the required
constraints will therefore have higher precision, recall and
accuracy, and a lower edit distance.

VII. RESULTS

a) Comparison to prior language grounding work in
SAIL: We compare our model to existing approaches that
report final goal-state accuracy on the SAIL dataset. Most
similar to our approach is the model from [4] that trains a CCG
semantic parser supervised by trajectories. Other methods
include algorithms supervised with logical forms [11, 13] that
learn semantic parsers for instructions as well as ones that
involve strategies for online learning of lexicons [10] and
ones that use contextual information [12] for better language
understanding. We also compare to the supervised alignment-
based models [2] that build grounding graph representations to
execute instructions and neural sequence-to-sequence models
[33] that translate language to actions in the environment.

TABLE II
EVALUATION OF SYSTEMS ON THE SAIL DATASET.

System Single Multi

Chen and Mooney [11] 54.4 16.18
Chen [10] 57.28 19.18

+ additional data 57.62 20.64
Kim and Mooney [23] 57.22 20.17
Artzi and Zettlemoyer [4] 65.28 31.93
Andreas and Klein [2] 59.60 -
Mei et al. [33] 71.05 30.34
Ours 66.92 20.17

b) Performance in SAIL: Table II shows goal-state ac-
curacy of systems on SAIL, while Table III shows evaluation
metrics for paths produced, compared to ground-truth paths in
the dataset. Table II compares to other work that is different in
the form of supervision provided and model architecture used,
but evaluates on the same end-task i.e., goal-state accuracy
over the SAIL dataset. We see that our model has comparable
performance to previous models in terms of navigating to the
correct goal location. However, this metric can still reward
incorrect paths (e.g., ones that violate specified constraints) as
long as they end up in the correct final location. In Table III
we compare to the best-performing model in terms of path
accuracy. We see that our model outperforms the previous
best-performing model when we evaluate the entire path
taken. We furthermore analyse the type of natural language

instructions that involve complex temporal constraints. We
do this by taking all instructions in the dataset that contain
natural language counterparts of temporal operators (e.g., until,
eventually, finally, always..) and evaluate models specifically
on this subset. These temporal sentences form 20% of the
data (476) sentences. We see that our model that grounds to
temporal logical form outperforms previous models under this
finer-grained evaluation.

TABLE III
FOR PATH EVALUATION, WE EVALUATE PRECISION, RECALL, ACCURACY

(HIGHER IS BETTER) AND EDIT DISTANCE (LOWER IS BETTER).

Data System Prec. Recl. Acc. ED

All Seq2seq 31.6 30.33 91.5 3.25
(SAIL) Ours 33.5 32.34 93.7 2.24

+1.9 +2.01 +2.2 -1.01

Temporal Seq2seq 31.2 30.19 91.2 3.91
(SAIL) Ours 34.3 35.2 94.5 1.27

+3.1 +5.01 +3.3 -2.64

c) Comparison to baseline in real-world OSM environ-
ments: We now turn to the real-world environments with the
newly-collected complex language commands. To evaluate the
generalisability of our approach in multiple real-world envi-
ronments with complex langauge, we evaluate performance
in each of the new environments, after grounding natural
language instructions to logical forms, and then planning with
logical forms in each environment. We compare to a baseline
that does not use LTL. This model takes in a natural language
utterance and predicts a final goal location from the set of
elements in the environment; therefore not considering all the
sequential constraints. The planner then finds a path from the
start location to the goal. This model is a strong competitor
in instances that do not require temporal reasoning (e.g., to
directly go to one goal location without needing to meet path
constraints), however for complex, sequential tasks, this does
not account for temporal ordering and intermediate tasks. We
use a Multi-Layer Perceptron (MLP) classifier, that encodes
the natural language instruction and predicts the final goal-
location (i.e., landmark) from the set of all landmarks. Each
training sample of language and trajectory pairs therefore gives
us a training sample of language paired with the correct end-
goal location, which is obtained by simply taking the last
point of the ground-truth trajectory. We use a cross-entropy
loss against the correct goal-state and train this model for
each environment. A model that correctly predicts the goal
can therefore achieve perfect goal-state accuracy when this
is given to a planner in the environment. However, this does
not give us any guarantees on the path taken. This baseline
model therefore has the same number of training samples
as the weakly supervised LTL parser, but performs a simple
prediction task, rather than a semantic parsing task composed

TABLE IV
EVALUATION ON ALL ENVIRONMENTS. THE FIRST NUMBER SHOWS GOAL-STATE ACCURACY (HIGHER IS BETTER) WHILE THE SECOND SHOWS EDIT

DISTANCE COMPARED TO THE GROUND-TRUTH TRAJECTORY (LOWER IS BETTER).

Austin, TX Ann Arbor, MI Atlanta, GA Baltimore, MD Berkeley, CA SAIL

Ours 89.4 / 1.1 84.3 / 1.9 77.6 / 1.6 74.5 / 1.4 80.3 / 1.5 66.9 / 2.1
Baseline 66.7 / 3.4 78.4 / 3.0 74.9 / 3.2 68.3 / 3.5 70.3 / 4.3 74 / 2.2

Boston, MA Cambridge, MA New Haven, CT Philadelphia, PA Providence, RI SAIL (T)

Ours 69.8 / 3.1 68.8 / 2.2 88.5 / 1.1 89.9 / 1.8 76.6 / 1.2 74.3 / 1.1
Baseline 60.3 / 3.3 52.3 / 3.4 76.5 / 2.6 63.5 / 3.9 74 / 2.2 70.1 / 4.3

of operators and operands.
d) Performance in OSM: Table IV shows goal-state ac-

curacy as well as path metrics in each OSM map. Each test set
is composed of a 100 different unseen trajectories with natural
language commands of varying length. We compute goal-
state accuracy by evaluating whether or not the final location
after planning is the correct end location of the trajectory.
We compute path accuracy by computing the edit distance
between the computed path and the ground-truth trajectory.
We report the average over all samples in each test set. We
see that our model outperforms the non-LTL baseline on the
path metric of edit distance (lower is better), since reasoning
temporally enforces meeting all the intermediate constraints,
therefore allowing the planner to find a path that matches
the ground-truth path. We also see that goal-state accuracy
is higher. This is because there exist several cases where the
ordering of referents in the natural language statements can
be reversed (e.g., both sentences “go to B and then finally to
A” “go to A after going to B” have the same meaning, but in
the latter, the location A is referred to before the location B
in the natural language sentence, thus causing the final goal
location to be predicted incorrectly).

e) Demonstration in Simulation: To demonstrate the
working of our entire pipeline in real time, we demonstrate the
execution of natural language instructions in simulation. This
can then be connected to the Skydio R1 drone, that navigates
over actual landmark coordinates in any of the real-world
environments. Due to several drone navigation restrictions, we
demonstrate this only inside the simulator, however navigating
over the actual real-world environment coordinates.

Fig. 8. Example still from our robot demonstration in simulation with a
Skydio drone.

Specifically, for our demonstration video, we sample a
different human-given natural language instruction (that was
never used during training) in each of the 10 environments.
In real-time, we parse these with the weakly-supervised model
trained in the environment, plan with the produced LTL speci-
fication, and show the drone navigating over the planned path.
A video of the demonstration attached with this paper, shows
the Skydio drone in simulation following these commands
in different environments, demonstrating the entire end-to-
end process. All of these environments follow our weakly
supervised approach described above. This means, that this
demonstration and real-time usage can be applied to any new
environment in which we collect natural language annotations
for trajectories, therefore allowing the model to train and then
produce LTL representations that the planner needs.

VIII. CONCLUSION

In this paper we use a weakly supervised semantic pars-
ing model to ground natural language to temporal logical
form — a formal language that allows handling of complex,
temporal events that are typically unable to be handled by
most (traditionally Markovian) methods. We evaluate on both
artificial (SAIL) and real-world (OSM) environments. While
the SAIL navigation dataset was not specifically constructed
with these temporal, sequential constraints in mind, the fine-
grained evaluations show our method allows dealing with
these naturally occurring constraints better than previous state-
of-the-art methods. Moreover, in our newly collected OSM
dataset that contains more complex, temporal language, we
show that our method that can deal with temporal order, has
superior performance. Future work involves incorporating the
structure of LTL to jointly learn logical forms and execution
models, especially in domains that specifically require tem-
poral reasoning. Future work on the planning side involves
working in partially observable domains, as well as dealing
with landmarks and locations that were never seen before.
Future work on the neural decoding side involves grounding
to new elements in the environment that did not exist in the
model’s vocabulary during training. This will allow generalis-
ing to environments different from what was trained on (e.g.,
a new city) to allow planners to take in logical forms decoded
in those environments. Future work can also explore more
action-oriented language, rather than goal-based approaches,

as well as attempting to resolve spatial language commands
to elements in the environment for better navigation.

REFERENCES

[1] Anne H Anderson, Miles Bader, Ellen Gurman Bard,
Elizabeth Boyle, Gwyneth Doherty, Simon Garrod,
Stephen Isard, Jacqueline Kowtko, Jan McAllister, Jim
Miller, et al. The hcrc map task corpus. Language and
speech, 34(4):351–366, 1991.

[2] Jacob Andreas and Dan Klein. Alignment-based com-
positional semantics for instruction following. arXiv
preprint arXiv:1508.06491, 2015.

[3] Yoav Artzi and Luke Zettlemoyer. Bootstrapping seman-
tic parsers from conversations. In Proceedings of the
conference on empirical methods in natural language
processing, pages 421–432. Association for Computa-
tional Linguistics, 2011.

[4] Yoav Artzi and Luke Zettlemoyer. Weakly supervised
learning of semantic parsers for mapping instructions to
actions. Transactions of the Association for Computa-
tional Linguistics, 1:49–62, 2013.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473,
2014.

[6] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. Semantic parsing on freebase from question-
answer pairs. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing,
pages 1533–1544, 2013.

[7] Satchuthananthavale RK Branavan, Harr Chen, Luke S
Zettlemoyer, and Regina Barzilay. Reinforcement learn-
ing for mapping instructions to actions. In Proceedings
of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume 1-
Volume 1, pages 82–90. Association for Computational
Linguistics, 2009.

[8] J Richard Büchi. On a decision method in restricted
second order arithmetic. In The Collected Works of J.
Richard Büchi, pages 425–435. Springer, 1990.

[9] Guido Bugmann, Stanislao Lauria, Theocharis Kyriacou,
Ewan Klein, Johan Bos, and Kenny Coventry. Using ver-
bal instructions for route learning: Instruction analysis.
Proc. TIMR, 1:96103, 2001.

[10] David L Chen. Fast online lexicon learning for grounded
language acquisition. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguis-
tics: Long Papers-Volume 1, pages 430–439. Association
for Computational Linguistics, 2012.

[11] David L Chen and Raymond J Mooney. Learning to
interpret natural language navigation instructions from
observations. In Twenty-Fifth AAAI Conference on Arti-
ficial Intelligence, 2011.

[12] David L Chen, Joohyun Kim, and Raymond J Mooney.
Training a multilingual sportscaster: Using perceptual

context to learn language. Journal of Artificial Intelli-
gence Research, 37:397–435, 2010.

[13] Henry Chen, Austin S Lee, Mark Swift, and John C Tang.
3d collaboration method over hololens and skype end
points. In Proceedings of the 3rd International Workshop
on Immersive Media Experiences, pages 27–30. ACM,
2015.

[14] James Clarke, Dan Goldwasser, Ming-Wei Chang, and
Dan Roth. Driving semantic parsing from the world’s
response. In Proceedings of the fourteenth conference
on computational natural language learning, pages 18–
27. Association for Computational Linguistics, 2010.

[15] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna
Rohrbach, Jacob Andreas, Louis-Philippe Morency, Tay-
lor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and
Trevor Darrell. Speaker-follower models for vision-and-
language navigation. In Advances in Neural Information
Processing Systems, pages 3318–3329, 2018.

[16] Omer Goldman, Veronica Latcinnik, Udi Naveh, Amir
Globerson, and Jonathan Berant. Weakly-supervised
semantic parsing with abstract examples. CoRR,
abs/1711.05240, 2017. URL http://arxiv.org/abs/1711.
05240.

[17] Dan Goldwasser and Dan Roth. Learning from natural
instructions. Machine learning, 94(2):205–232, 2014.

[18] Nakul Gopalan, Marie desJardins, Michael L Littman,
James MacGlashan, Shawn Squire, Stefanie Tellex, John
Winder, and Lawson LS Wong. Planning with abstract
markov decision processes. In ICAPS, 2017.

[19] Nakul Gopalan, Dilip Arumugam, LL Wong, and Ste-
fanie Tellex. Sequence-to-sequence language grounding
of non-markovian task specifications. In Robotics: Sci-
ence and Systems, 2018.

[20] Kelvin Guu, Panupong Pasupat, Evan Zheran Liu, and
Percy Liang. From language to programs: Bridging re-
inforcement learning and maximum marginal likelihood.
CoRR, abs/1704.07926, 2017. URL http://arxiv.org/abs/
1704.07926.

[21] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

[22] Vihan Jain, Gabriel Magalhaes, Alex Ku, Ashish
Vaswani, Eugene Ie, and Jason Baldridge. Stay on the
path: Instruction fidelity in vision-and-language naviga-
tion. arXiv preprint arXiv:1905.12255, 2019.

[23] Joohyun Kim and Raymond J Mooney. Unsupervised
pcfg induction for grounded language learning with
highly ambiguous supervision. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Lan-
guage Learning, pages 433–444. Association for Com-
putational Linguistics, 2012.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[25] Philipp Koehn and Rebecca Knowles. Six chal-

http://arxiv.org/abs/1711.05240
http://arxiv.org/abs/1711.05240
http://arxiv.org/abs/1704.07926
http://arxiv.org/abs/1704.07926

lenges for neural machine translation. arXiv preprint
arXiv:1706.03872, 2017.

[26] Jayant Krishnamurthy and Tom M Mitchell. Weakly
supervised training of semantic parsers. In Proceedings
of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natu-
ral Language Learning, pages 754–765. Association for
Computational Linguistics, 2012.

[27] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi,
and Josh Tenenbaum. Hierarchical deep reinforcement
learning: Integrating temporal abstraction and intrinsic
motivation. In Advances in neural information processing
systems, pages 3675–3683, 2016.

[28] Brenden M Lake and Marco Baroni. Still not systematic
after all these years: On the compositional skills of
sequence-to-sequence recurrent networks. arXiv preprint
arXiv:1711.00350, 2017.

[29] Xiao Li, Cristian-Ioan Vasile, and Calin Belta. Rein-
forcement learning with temporal logic rewards. In 2017
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3834–3839. IEEE, 2017.

[30] Percy Liang, Michael I Jordan, and Dan Klein. Learning
dependency-based compositional semantics. Computa-
tional Linguistics, 39(2):389–446, 2013.

[31] Michael L Littman, Ufuk Topcu, Jie Fu, Charles Is-
bell, Min Wen, and James MacGlashan. Environment-
independent task specifications via gltl. arXiv preprint
arXiv:1704.04341, 2017.

[32] Matt MacMahon, Brian Stankiewicz, and Benjamin
Kuipers. Walk the talk: Connecting language, knowledge,
and action in route instructions. Def, 2(6):4, 2006.

[33] Hongyuan Mei, Mohit Bansal, and Matthew R Walter.
Listen, attend, and walk: Neural mapping of navigational
instructions to action sequences. In Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

[34] Dipendra Misra, John Langford, and Yoav Artzi.
Mapping instructions and visual observations to ac-
tions with reinforcement learning. arXiv preprint
arXiv:1704.08795, 2017.

[35] Yoonseon Oh, Roma Patel, Thao Nguyen, Baichuan
Huang, Ellie Pavlick, and Stefanie Tellex. Planning with
state abstractions for non-markovian task specifications.
arXiv preprint arXiv:1905.12096, 2019.

[36] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A.
Seshia. A learning based approach to control synthesis
of markov decision processes for linear temporal logic
specifications. In IEEE Conference on Decision and
Control, Dec 2014. doi: 10.1109/CDC.2014.7039527.

[37] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence
to sequence learning with neural networks. In Advances
in neural information processing systems, pages 3104–
3112, 2014.

[38] Richard S Sutton, Doina Precup, and Satinder Singh.
Between MDPs and semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artificial
intelligence, 112(1-2):181–211, 1999.

[39] Lappoon R Tang and Raymond J Mooney. Automated
construction of database interfaces: Integrating statisti-
cal and relational learning for semantic parsing. In
Proceedings of the 2000 Joint SIGDAT conference on
Empirical methods in natural language processing and
very large corpora: held in conjunction with the 38th
Annual Meeting of the Association for Computational
Linguistics-Volume 13, pages 133–141. Association for
Computational Linguistics, 2000.

[40] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valen-
zano, and Sheila A McIlraith. Teaching multiple tasks to
an rl agent using ltl. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent
Systems, pages 452–461. International Foundation for
Autonomous Agents and Multiagent Systems, 2018.

[41] Min Wen, Ivan Papusha, and Ufuk Topcu. Learning
from demonstrations with high-level side information.
In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, 2017.

[42] Edward C Williams, Nakul Gopalan, Mine Rhee, and
Stefanie Tellex. Learning to parse natural language to
grounded reward functions with weak supervision. In
2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 1–7. IEEE, 2018.

[43] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning
Yao, Shanelle Roman, et al. Spider: A large-scale
human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task. arXiv preprint
arXiv:1809.08887, 2018.

[44] Luke S Zettlemoyer and Michael Collins. Learning to
map sentences to logical form: Structured classification
with probabilistic categorial grammars. arXiv preprint
arXiv:1207.1420, 2012.

IX. SUPPLEMENTARY MATERIAL

Environment Natural Language Instruction LTL Task Specification

SAIL (Jelly) Go forward one segment to the pink-flowered carpet hall , ©a
a = at floor flowered

SAIL (Grid) Go forward along the pink-flowered carpet hall three segments , (a ∧ � b)U (�c)
to the blue-tiled hall, passing a hatrack maybe. a = at floor pink, b = at object hatrack,

c = at floor blue

SAIL (L) Follow the yellow path towards the chair , a U � b
a = at floor yellow, b = at chair

OSM (Austin, TX) Starting from Winged Victory go to Mustangs then finally go to , a U (� b U (� c))
Monochrome for Austin. a = at winged victory, b = at mustangs

c = at monochrome

OSM (Ann Arbor, MI) Begin at Shapiro Library. From there, turn southwest and go until , a U � b
you reach Good Time Charley’s. a = at shapiro library, b = at charleys

OSM (Atlanta, GA) Begin at the Student Center and go to Rotatious before ending , a U (� b U (� c))
at Panda Express a = at student center, b = at rotatious

a = at panda express

OSM (Baltimore, MD) Walk north from William Welch to BMA Sculpture Gardens. , a U � b
a = at williamwelch, b = at bma

OSM (Berkeley, CA) From Observatory Hill, go northwest to Memorial Pool. , a U � b
a = at obs hill, b = at memorial pool

OSM (Boston, MA) Head north, straight northeast slightly. , � a
When you get to the Fogg museum, make a left and head west a = at fogg museum
and southward for a long time. Eventually you will come to
Cafe Pamplona, that’s your end point.

OSM (Cambridge, MA) Start at Cambridge Bicycle and go straight to the MIT Museum. , a U (� b U (� c U (� d)))
Then veer a little to the right to the Middlesex Lounge. Keep a = at cambridge bicycle, b = at museum
veering right to end up at The Asgard. c = at middlesex, d = at asgard

OSM (New Haven, CT) Head south towards Harkness Tower. , � a
a = at harkness tower

OSM (Philadelphia, PA) Starting at Philadelphia Runners, travel east-southeast until you , a U � b
reach Annenberg Center. a = at phil runners, b = at annen center

OSM (Providence, RI) You will be starting at the Blue Room. From the Blue Room, you , a U � b
will walk Southwest for a while until you reach the Slavery a = at blue room, b = at slavery memorial
Memorial. Once you have arrived there, you are at
your destination.

TABLE V
EXAMPLE COMMANDS FROM THE DIFFERENT DATASETS AS WELL AS LTL EXPRESSIONS PRODUCED BY THE MODEL.

LTL Task Specification Postfix Form

, � (a) , �a
, (a U b) , U a b
, (a ∧ b) , ∧ a b
, (a ∨ b) , ∨ a b
, (a ∧ b) U (c) , U ∧ a b c
, (a ∧ b) U � (c) , U ∧ a b � c

TABLE VI
TABLE SHOWS EXAMPLE LOGICAL FORMS IN POSTFIX NOTATION, AS

DECODED BY OUR MODEL. THE LETTERS A, B.. REFER TO
PROPOSITIONS (E.G., A LANDMARK IN A MAP) WHILE THE SYMBOLS

�,U,∧ REFER TO UNARY OR BINARY OPERATORS FOR eventually, until, and
AND SO ON AS SPECIFIED IN TABLE ??.

