
Teaching Robots To Draw

Atsunobu Kotani and Stefanie Tellex
Department of Computer Science

Brown University
{akotani,stefie10}@cs.brown.edu

Abstract— In this paper, we introduce an approach
which enables manipulator robots to write handwrit-
ten characters or line drawings. Given an image of
just-drawn handwritten characters, the robot infers a
plan to replicate the image with a writing utensil, and
then reproduces the image. Our approach draws each
target stroke in one continuous drawing motion and
does not rely on handcrafted rules or on predefined
paths of characters. Instead, it learns to write from a
dataset of demonstrations. We evaluate our approach
in both simulation and on two real robots. Our model
can draw handwritten characters in a variety of lan-
guages which are disjoint from the training set, such
as Greek, Tamil, or Hindi, and also reproduce any
stroke-based drawing from an image of the drawing.

I. Introduction

The most recognized printing system today is an ink-
jet printer. By moving back and forth and spraying ink to
the desired locations, printers replicate input images in a
bit-map format. However, it is not the case that an ink-
jet printer draws with a writing utensil such as a pen or
marker. In order to collaborate with humans, we would
like for a manipulator robot to be able to draw on a white
board, write a message with a pen on a post-it note,
or draw a diagram. The ability to write would enable a
robot to put up a sign directing people that a hallway
was closed, to produce art using physical mediums such
as a paint brush or a pen, or to address and mail a
letter. Additionally, the robot could potentially engage
in teaching activities at a white board, writing a math
equation or drawing a diagram. These skills rely on the
ability to produce a policy to draw with a writing utensil.

What differentiates handwriting from current printing
technologies is its continuous drawing process. Shown
an image of handwritten characters, robots should draw
each target stroke in one consecutive drawing motion.
Existing methods for robots that write with a utensil
are unable to look at a bit-mapped image and directly
produce a drawing policy. Instead, they require external
information about the stroke order for character, such
as human gestures [1, 2] or predefined paths for each
letter [3]. This extra information makes it challenging
for novice users to teach the robot how to draw new
characters, because the stroke order information must
be provided. A more recent reinforcement learning based
approach [4] successfully learns to draw the target image,
yet their model still struggles to draw each target stroke

Fig. 1: Demonstration of our model reproducing the target
image in a real robotic environment: A) a user drawing char-
acters on a whiteboard, B) a robot taking a bitmapped image
from its camera, C) a robot executing commands predicted
by our proposed model in real-time D) finished process E)
image of the user’s drawing F) image of the robot’s drawing

in one continuous drawing motion, and frequently draws
the same parts over and over to replicate the image.
Our approach, in contrast, takes as input an image to

draw, then generates commands for robots to replicate
the image with a writing utensil. We divide the drawing
problem into two scales: 1) the local scale, consisting of a
5×5 pixels window, and 2) the global scale, consisting of
the whole image. We train two separate networks for the
different scales. Unlike other approaches, our model does
not require any predefined handcrafted rules, and learns
drawing from stroke-order demonstrations provided only
during its training phase.
We evaluate our system on a corpus of handwritten

English, Japanese and Chinese characters [5] and show
that it can look at a bitmap image of a character that
it has not previously seen and accurately reproduce the
character. In almost all instances it also predicts the
correct stroke order and direction for the character.
In addition we demonstrate that our approach enables
two different robots to draw characters on paper and
on a white board in 10 different languages as well



as stroke-based drawings, including English, Chinese,
French, Greek, Hindi, Japanese, Korean, Tamil, Urdu
and Yiddish. Figure 1 shows an example of our robot
reproducing the English word “hello.”

II. Related Work
Traditional motion planning methods are insufficient

for robot writing because of the inability to specify the
highly non-Markovian goals and constraints needed to
produce a character stroke. For example, RTT [6] or
RRT* [7] will find a path on our image plane, yet is
likely to result in a crooked path that does not consider
the continuity of each stroke. In our work, we assume
that the drawing happens in a locally connected part of
the robot’s workspace, so that local movements do not
cause global reconfigurations. We can then express the
drawing motion in terms of these local movements. In
practice with our two different robots, Baxter and Movo,
we found this constraint was easy to satisfy. Recently,
Rakita et al. [8] introduced an approach that finds
series of locally movable positions for robots that do not
require a global reconfiguration, which could be used to
satisfy this contstraint automatically. Our representation
is analogous to Logo [9] or Postscript [10]. Just as they
described various shapes in their simplified format, our
approach translates the image to multi-dimensional local
movements, and our contribution represents steps toward
multi-joint printers which achieve better reproduction of
not only images but also objects in 3D.

Most existing approaches for robotic drawing focus
on predicting an agent’s movement on a target image
plane using conventional image processing techniques,
and do not learn from demonstrations to gain universal
knowledge of drawing characters. Many previous meth-
ods segment a character into a set of strokes from its
geometric properties [11, 12]. Mueller et al. [13] proposed
an iterative training procedure to fit a spline into a
stroke. However, its performance largely depends on a
manually provided initial spline position, in contrast to
our method which needs only an image of the drawing.

Xie et al. [14] explored authentic brush drawing, Sumi-
e, with reinforcement learning methods. They manually
designed a cone-shape brush agent with a tip point and
a center of a circle with its radius, and formulated the
drawing problem as an MDP. They solve the MDP using
policy gradient methods, and showed working examples
in their simulated environment. However, their approach
requires manual labels of the starting and ending location
for each drawing region. Importantly, they formulated
the drawing problem as an MDP, although the writing
problem is essentially non-Markov. Our approach, in
contrast, makes the simplifying assumption that the
writing implement is either touching or not touching the
writing surface, but requires only a bitmapped image to
infer a policy for drawing a new character.

More recent deep-RL approaches [15, 4] learn a gen-
eral drawing policy, yet frequently do not draw each

target stroke in one continuous fluent motion; instead
it frequently backtracks over a previously-drawn area
to write over it again. Their approaches involve less
supervision than previous ones, since they do not require
strokes as input. Yet such redundant drawing actions
can potentially cause loss in details. Due to its less
supervision, they also require millions of frames of data
during training. Collection of training data in robotic en-
vironments is often expensive, and our approach achieves
better performance with less training data, although
our data is augmented with strokes. However we only
need these strokes during training and at test time can
reproduce a drawing given only a bitmapped image.

III. Technical Approach
Given the target image of a handwritten character,

Xtarget, our goal is to generate a sequence of actions,
A = {a1, a2, ..., aL}, for a robot to reproduce Xtarget.
In our experiment, we define Xtarget as a 100 × 100
binary image, and a command at timestep t as at =
(∆x,∆y, touch) where ∆x and ∆y are shifts in x, y
coordinates that range between −100 and +100. The
variable touch is a boolean value which controls the touch
/ untouch status of the writing utensil to the canvas.
We aim to train a parametrized function approximator

fθ such that A = fθ(X
target). While it is possible to

directly estimate θ, we discovered that dividing the prob-
lem into two sub-problems and separately training two
specialized distinct models achieves better performance.
The first sub-problem is to make the drawing agent follow
each stroke from its start to end. We design the Local
Model with parametrized weights θL for this task. The
second sub-problem is to predict the starting location
of the next stroke at the end of current stroke. We
designed the Global Model with weights θG. The local
model predicts where to move the pen-tip next in its 5×5
pixel environment. Once it reaches to an end, the global
model predicts the next starting point of the new stroke.
We repeat this process iteratively until the entire target
image is visited by our network, and obtain the full action
sequence A = {aG1 , aL1 , aL2 , ..., aLn , aGm, aLn+1, ...}. We chose
the size of canvas and numbers for tensor dimensions em-
pirically, balancing performance and computation speed
as well as memory usage. The overview of our network
is shown in Figure 2.

A. Local Model
Given the starting point, the goal of our local model

is to follow the stroke until it reaches the end. A local
state at timestep t, sLt , is a set of three images;
1) XLenv

t : already visited region by our local model,
2) XLcon

t : target region continuously connected with
current location of our local model,

3) X
Ldif

t : difference image between target image
Xtarget and XLenv

t , which is indeed the unvisited
region of the target image.

Figures 2b to 2d are the example of these three images.



(a) Xtarget (b) XLenv
t (c) XLcon

t (d) X
Ldif
t

(e) X
Gloc
t (f) XGenv

t (g) X
Glast
t (h) X

Gdif
t

Fig. 2: Our proposed network architecture: comprised of two sub-models, local and global models. Numbers in color show
shapes of tensors, and FC stands for a fully-connected layer. Our local state sLt is a combination of (XLenv

t , XLcon
t , X

Ldif
t ),

and our global state sGt is of (XGloc
t , XGenv

t , X
Glast
t , X

Gdif
t ). The FC layer of the global model is applied to the last dimension

of the encoded tensor, as 1x1 convolution of stride 1.

The unique characteristic of our local model design is
that we apply an extraction procedure to the encoded
tensor of shape (100, 100, 64) to extract the (5, 5, 64)
tensor centered at the current location of the agent. The
reasons why we extract local information are:
1) Generalization of knowledge: Every image of hand-

written characters is different, and in order to gain
general knowledge of drawing, it is crucial to work in
smaller scale where an agent will encounter similar
situations more frequently.

2) Computational expensiveness: Feeding large images
directly into RNN (recurrent neural networks) to
predict action sequence is computationally expen-
sive. By extracting a small region, we can reduce
the size of input tensors to RNN cells and achieve
less computational expense and faster training.

3) Information selection: While the agent draws a
stroke, the most important region to focus on is the
one around the current location. In a broad view, our
local network can be seen as a structural attention
mechanism where we force our model to attend the
5× 5 local region around the current location.

In order to preserve continuity in drawing actions,
we use the Long Short-Term Memory (LSTM) [16] in
our local network. As a simple example, when the agent
reaches the intersection of two lines, it has choices of
going either North, South, East, or West. If we know that

the agent came from the North, we can make a reasonable
guess that it should go South in order not to disrupt the
continuity of the drawing motion.
Now, we define how our local network predicts the next

action aLt . Given a local state at timestep t as sLt and
current location as (xt, yt), our local model first encodes
the input tensor, sLt using residual networks [17]:

eLt = fθResidual
L

(sLt ) (1)

Our residual networks consist of four residual blocks,
each of which contains two sub-blocks of 1) batch
normalization layer [18], 2) rectified linear unit [19],
and 3) two-dimensional convolutional layer. Convo-
lution layers in these four blocks have channels of
[[16, 16], [16, 16], [16, 32], [32, 64]], stride of 1, width of 3
and height of 3. After the residual networks, we have an
encoded tensor eLt of shape (100, 100, 64), and we then
apply the extraction procedure to eLt centered at (xt, yt)
and receive a new tensor, eL∗

t of shape (5, 5, 64). To feed
eL

∗

t into the LSTM, we reshape it into a vector vLt of
length 5× 5× 64 = 1600:

vLt = reshape(eL
∗

t ) (2)

We feed vLt to the LSTM and receive context vector cLt
and hidden state representation hL

t as:

cLt , h
L
t = fθLSTM

L
([vLt ;h

L
t−1]) (3)



Two components of local action aLt , the local touch action
aLtouch
t and the locational action aLloc

t are calculated from
context vector cLt :

aLtouch
t = σ(fθFC1

L
(cLt ))

aLloc
t = argmax fθFC2

L
(cLt )

(4)

where σ is a sigmoid activation function. Finally, the loss
function for our local model at timestep t is given as two
cross-entropy values for locational and touch action:

LLocal
t = LLocalLoc

t + LLocalTouch

t (5)

The locational loss is a cross-entropy for predicted action
aLt and ground truth action aL

∗

t . Because locational
actions have shape of (5, 5), to compute a scalar cross-
entropy value, we reshaped a

L∗
loc

t to a one-hot vector of
shape (1, 25) and aLloc

t to (25, 1).

LLocalLoc

t = −a
L∗

loc
t log(aLloc

t ) (6)

Note that this log function is element-wise. Similarly, we
have a predicted touch action value aLtouch

t as a scalar
and a

L∗
touch

t as a binary scalar label.

LLocalTouch

t =− a
L∗

touch
t log(aLtouch

t )

− (1− a
L∗

touch
t ) log(1− aLtouch

t )
(7)

B. Global Model
The goal of our global model is to predict the starting

point of the next stroke in a full-scale image plane. When
aLtouch
t = 0, the global model observes the current state

sGt , which is a set of four images in Figures 2e to 2g,
1) XGloc

t : current location of our local model,
2) XGenv

t : already visited region by our local model,
3) XGlast

t : recently visited region by our local model
since the last global prediction,

4) X
Gdif

t ) : difference image between target image
Xtarget and X

Gdif

t .
The global network also has the residual network

to encode state images, and it shares all weights with
the one in our local model, except for the very first
initialization layer. To adjust the channel size of input
tensors, the initialization layer in our residual network
maps a tensor of shape (N,N,M) to (N,N, 16). Due
to the discrepancy in shapes between local and global
states, the size of the layer is different. We obtain the
global action aGt as:

eGt = fθResidual
G

(sGt )

cGt = fθFC
G

(eGt )

aGt = argmax
(x,y)

cGt

(8)

and the loss function for the global model at timestep t is
cross-entropy for predicted action aGt and ground truth
action aG

∗

t . Both aGt and aG
∗

t have shape of (N,N) but
converted to shapes of (N2, 1) and (1, N2) respectively

to calculate the scalar cross entropy value by taking the
dot product of the two vectors:

LGlobal
t =− a

G∗
loc

t log(aGloc
t ) (9)

IV. Evaluation
The aim of our evaluation was to assess the trained

model’s performance at generating policies for writing
characters in both simulation as well as on a real robot.

A. Training Procedure
To generate sufficient amount of training data for our

model in simulation, we use KanjiVG [5], a database
of Japanese Kanji characters. This database consists of
both images of the character as well as an ordered list
of strokes in the SVG format. To retrieve a sample,
we randomly selected points on each defined curve, and
for the ith stroke of the character, we have an ordered
list of actions; aRAW

i = {aRAW
i,0 , aRAW

i,1 , ..., aRAW
i,N }. We

then decompose raw actions a∗i into local actions which
are in a strict range of −2 and +2. This leads us to
obtain aL

∗

i = {a∗i,0, a∗i,1, ..., a∗i,M}, where the size of the
new action sequence M tends to be much larger than
the size of the raw action sequence N . For the global
model, we collected the starting point of each stroke.
We used 10,000 unique characters for training and left
2,000 for validation. To aid in generalization, we also
applied shifting, scaling and shearing effects to images
and associated strokes.
We initially planned to train our model on a character

basis, which consists of multiple strokes. A character
sample in our modified Kanji dataset has about 12.5
strokes, each of which involves of 15.8 local actions,
leading to 200 local actions per character on average.
Due to the relatively large size of full-scale images (100×
100), training a whole character at once in a recurrent
manner is computationally expensive. To prevent our
local model from carrying information about hundreds
of past actions, we decided to train our network on a
stroke basis to shorten the length of training sequences
from a few hundred to 1~20. This decision means that
we disregard all dependency between a current stroke and
its past strokes. We train each stroke as if it just started
drawing, by resetting the LSTM states to zero for every
beginning of a new stroke. For training neural networks,
we use Adam [20] with a learning rate of 1e−4.

To measure the performance of our approach, we in-
troduce two metrics; pixel accuracy and stroke accuracy.
Pixel accuracy measures how similar the target image
and the drawn image are, by calculating TP/(T + P −
TP ), where T stands for the number of true pixels
(nonzero pixels in the target image), P for positive pixels
(nonzero pixels in the drawn image), and TP for true-
positive pixels (nonzero pixels in both the target and the
drawn image). We also measure the performance of our
models by stroke accuracy, which checks if the model
drew one stroke in one continuous action. This metric is
calculated by 1) comparing each drawn stroke with every



ID Description Pixel Accuracy Stroke Accuracy
1 Our Proposed Model in Figure 2 0.9988 (0.9990) 0.9630 (0.9646)
2 Model 1 + (a) Replacement of a LSTM cell with a Fully-Connected layer 0.9985 (0.9973) 0.9564 (0.9532)
3 Model 1 + (b) Replacement of Extraction Procedure with Initial Extraction 0.9964 (0.9957) 0.8746 (0.8822)
4 Model 3 + (a) Replacement of a LSTM cell with a Fully-Connected layer 0.9995 (0.9999) 0.8666 (0.8809)
5 (c) Global Model without Local Model 0.2693 (0.2773) 0.1565 (0.1680)

TABLE I: Pixel and Stroke Accuracy for Training and Testing Data in Various Models (Testing results in parentheses)

target stroke, 2) collecting the best TP/(T + P − TP )
score between stroke images, and 3) taking an average for
all drawn strokes to obtain a score for a character sample.
We randomly chose 100 unique samples from our training
and testing dataset, and calculated these measure.

To evaluate our model performance, we made three
types of modifications to our model.
(a) First, we replaced the LSTM cell in our local model

with a fully-connected layer to discard sequential
aspects from our network. This ablation tests the
effectiveness of our recurrent approach to preserve
continuity of drawing actions.

(b) Second, we considered when to apply our extraction
procedure. Instead of waiting to extract a (5, 5, 64)
tensor from the (100, 100, 64) encoded tensor, we
extract a (5, 5) patch from each image in our local
state to obtain a (5, 5, 3) tensor, feed it into the resid-
ual network and receive another (5, 5, 64). We name
this procedure as Initial Extraction to differentiate
it from our original extraction procedure.

(c) Finally, we removed the local model and modify
our global model to form a loop to itself to gener-
ate a sequence of actions. This ablation measures
the effects of our local model. The modified global
model needs to predict the next locational shift as
well as touch/untouch status, and for touch status
detection, the global network adds an extra fully-
connected layer. The locational action space is not
bounded to −2 and +2, so we trained this model
with aRAW instead of aL as target actions.

We now have 4 distinct models as our baseline, and Table
I displays the results for each model for the training and
testing datasets. To compare accuracy scores for different
models, we terminated the training process after feeding
a randomly sampled stroke data from the training set to
the model for 100,000 times.
B. Results

All models except for Model 5 achieved the near-
perfect pixel accuracy for both training and testing
data. This demonstrates the effectiveness of our approach
to locally solve the drawing problem for each stroke.
The main contribution of our local model to the entire
network is that it restricts the action space to a local 5×5
pixel region around the current location. While Model
5 needs to select one pixel to move next from 10, 000
choices, the local model has only 25 choices.
The best stroke accuracy was achieved by our proposed

model (Model 1), and with the Model 2 results, it is

apparent that extraction mechanism in the local model
plays an essential role in improving the performance.
However, it is important to spotlight that LSTM did

not contribute much for improving accuracy. Comparing
Model 1 with 2 and Model 3 with 4, the performance
gain is very small. Still, the recurrent approach did not
harm our performance, and in our future work, we will
investigate these architectures in a more dynamic writing
domain, such as a paint brush, where the state of the
drawing agent is largely dependent on past executed
sequence of actions.
Finally, an example of our model successfully repli-

cating the target image in its simulated environment is
shown in Figure 3. Different colors in Figure 3c indicate
different strokes, and how our model naturally segmented
the static image into a set of strokes.

C. Robotic Demonstration
To illustrate our system works in various robotic

environments, we tested our model with two robots,
Baxter and Movo. We directly apply our trained model
to the real robotic environment, which creates a need to
preprocess the original target image to match the image
format of our training data, such that the line width has
to be 1, and the image has to be size of 100×100, and so
on. If our model sees a vertically-long one-stroke drawing,
it is likely to divide the stroke into regions, individually
solve the drawing problems, and combine the results
together once all is completed. To adjust the line width,
we used technique of skeletonization [21] which extracts
the center line of a stroke-based drawing.

a) Baxter: Baxter first takes an image of a hand-
written characters from its wrist camera, and then gen-
erates relevant commands and starts drawing with its
marker, which we rigidly attached to the gripper. This

(a) target image (b) local moves (c) segmentation
Fig. 3: Example of our model reproducing the target image in
a simulated environment. Left : target image, Center : trace
of our local network scanning the whole target image, Right
: segmented strokes by local and global model



Fig. 4: Demonstration of Baxter reproducing the target image
: A) the target image the Baxter tried to replicate B) the
drawn image by the Baxter C) the Baxter in motion

process is shown in Figure 4, and the drawn characters
reproduce the input characters and general appearance.
However there is significant error in the drawn charac-
ters, due to position errors in the robot’s end effector. In
the future we plan to explore an end-to-end closed loop
learning of policies for writing to mitigate this problem.

b) Movo: We tested our model on our MOVO robot,
using the Kinova Jaco arm and the Kinect 2 as a
sensor. With its precise movement capabilities MOVO
reproduces the target image very accurately. Overall, the
robot demonstration produces a policy for drawing rec-
ognizable characters, including languages such as Greek,
Hindi and Tamil, which were not previously seen during
training. Figure 1 shows scenes from a robot reproducing
English text written on a whiteboard. Photographs of
drawn and handwritten examples appear in Figure 5.
Our model’s ability to reproduce English cursive, as

shown in Figure 5, raises the question of the ability of
this framework to reproduce handwritten signatures. For
example, given an image of a signature, our approach
could infer a policy for reproducing that signature with
a pen held by a robot. This capability has ramifications
in areas where signatures written with a writing utensil
are used to verify agreement, such as legal documents.

V. Conclusion
Overall we have presented an approach for inferring

a sequence of commands for drawing a character given
a bit-mapped image of the character. We demonstrated
that our approach gains general knowledge of handwrit-
ing and replicates the target image in both simulation
and two different robotic environments. Most signifi-
cantly, our trained model accurately predicts drawing
procedures for foreign characters, such as Greek, Hindi
and Tamil, which are not in the training dataset, as well
as arbitrary line drawings.

In the future, we will explore more advanced types
of drawing such as drawing with a paint brush, where
the speed of the stroke, the height/altitude/azimuth of
the brush relative to the canvas plane all affect the
drawing result. In this vein we are interested in closing

Fig. 5: “Hello” in different languages: from the top - En-
glish cursive, Urdu, Greek, Japanese, Korean, Chinese, Tamil,
French, Hindi and Yiddish, and a sketch of the Mona Lisa.
Blue strokes on the left are hand-drawn on a white board;
black strokes on the right are drawn by the robot on the same
white board after viewing the input image on the left.

the learning loop by enabling the robot to inspect what
it has drawn and improve its drawing policy based on ob-
servation of what it actually drew. We would also explore
the connections between writing and motion planning,
since we should plan motions to draw a character that
satisfy constraints such as being in the robot’s work space
and avoid collisions with other objects.
In the longer term, we see analogs between drawing

and other tasks such as cutting with a saw, frosting a
cake, or inferring a policy for a laser cutter. We would
like to apply our techniques and algorithms for enabling
a robot to creatively infer policies for these sorts of tasks.

VI. Acknowledgments
This work is supported by the National Science Foun-

dation under grant number IIS-1652561.



References

[1] Sylvain Calinon and Aude Billard. Learning of ges-
tures by imitation in a humanoid robot. Technical
report, Cambridge University Press, 2007.

[2] Fei Chao, Yuxuan Huang, Xin Zhang, Changjing
Shang, Longzhi Yang, Changle Zhou, Huosheng Hu,
and Chih-Min Lin. A robot calligraphy system:
From simple to complex writing by human gestures.
Engineering Applications of Artificial Intelligence,
59:1–14, 2017.

[3] Deanna Hood, Séverin Lemaignan, and Pierre Dil-
lenbourg. When children teach a robot to write:
An autonomous teachable humanoid which uses
simulated handwriting. In Proceedings of the Tenth
Annual ACM/IEEE International Conference on
Human-Robot Interaction, pages 83–90. ACM, 2015.

[4] Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin,
SM Eslami, and Oriol Vinyals. Synthesizing pro-
grams for images using reinforced adversarial learn-
ing. arXiv preprint arXiv:1804.01118, 2018.

[5] Ulrich Apel. KanjiVG. http://kanjivg.tagaini.
net/, 2009. [Online; accessed 25-August-2018].

[6] Steven M LaValle. Rapidly-exploring random trees:
A new tool for path planning. 1998.

[7] Sertac Karaman and Emilio Frazzoli. Sampling-
based algorithms for optimal motion planning. The
international journal of robotics research, 30(7):846–
894, 2011.

[8] Daniel Rakita, Bilge Mutlu, and Michael Gleicher.
Relaxedik: Real-time synthesis of accurate and fea-
sible robot arm motion. In Proceedings of Robotics:
Science and Systems, jul 2018. doi: 10.15607/RSS.
2018.XIV.043. URL http://graphics.cs.wisc.
edu/Papers/2018/RMG18a.

[9] Roy D Pea. Logo programming and problem solv-
ing.[technical report no. 12.]. 1983.

[10] Adobe Press. PostScript language reference man-
ual. Addison-Wesley Longman Publishing Co., Inc.,
1985.

[11] Fenghui Yao, Guifeng Shao, and Jianqiang Yi. Ex-
tracting the trajectory of writing brush in chinese
character calligraphy. Engineering Applications of
Artificial Intelligence, 17(6):631–644, 2004.

[12] Yuandong Sun, Huihuan Qian, and Yangsheng Xu.
A geometric approach to stroke extraction for the
chinese calligraphy robot. In Robotics and Automa-
tion (ICRA), 2014 IEEE International Conference
on, pages 3207–3212. IEEE, 2014.

[13] Samuel Mueller, Nico Huebel, Markus Waibel, and
Raffaello D’Andrea. Robotic calligraphy—learn-
ing how to write single strokes of chinese and
japanese characters. In Intelligent Robots and Sys-
tems (IROS), 2013 IEEE/RSJ International Con-
ference on, pages 1734–1739. IEEE, 2013.

[14] Ning Xie, Hirotaka Hachiya, and Masashi Sugiyama.
Artist agent: A reinforcement learning approach to

automatic stroke generation in oriental ink paint-
ing. IEICE TRANSACTIONS on Information and
Systems, 96(5):1134–1144, 2013.

[15] Kazuma Sasaki, Hadi Tjandra, Kuniaki Noda, Ku-
niyuki Takahashi, and Tetsuya Ogata. Neural
network based model for visual-motor integration
learning of robot’s drawing behavior: Association of
a drawing motion from a drawn image. In Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ In-
ternational Conference on, pages 2736–2741. IEEE,
2015.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long
short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778, 2016.

[18] Sergey Ioffe and Christian Szegedy. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[19] Vinod Nair and Geoffrey E Hinton. Rectified linear
units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807–814, 2010.

[20] Diederik Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[21] Ta-Chih Lee, Rangasami L Kashyap, and Chong-
Nam Chu. Building skeleton models via 3-d medial
surface axis thinning algorithms. CVGIP: Graphical
Models and Image Processing, 56(6):462–478, 1994.


