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Abstract— With increasing autonomy, robots like drones are
increasingly accessible to untrained users. Most users control
drones using a low-level interface, such as a radio-controlled
(RC) controller. For a wider adoption of these technologies
by the public, a much higher-level interface, such as natural
language or mixed reality (MR), allows the automation of the
control of the agent in a goal-oriented setting. We present
an interface that uses natural language grounding within an
MR environment to solve high-level task and navigational
instructions given to an autonomous drone. To the best of our
knowledge, this is the first work to perform fully autonomous
language grounding in an MR setting for a robot. Given a
map, our interface first grounds natural language commands to
reward specifications within a Markov Decision Process (MDP)
framework. Then, it passes the reward specification to an MDP
solver. Finally, the drone performs the desired operations in the
real world while planning and localizing itself. Our approach
uses MR to provide a set of known virtual landmarks, enabling
the drone to understand commands referring to objects with-
out being equipped with object detectors for multiple novel
objects or a predefined environment model. We conducted an
exploratory user study to assess users’ experience of our MR
interface with and without natural language, as compared to
a web interface. We found that users were able to command
the drone more quickly via both MR interfaces as compared to
the web interface, with roughly equal system usability scores
across all three interfaces.

I. INTRODUCTION

As drones become increasingly autonomous, it is imper-
ative that designers create intuitive and flexible ways for
untrained users to interact with these systems. A natural
language interface is immediately accessible to non-technical
users and does not require the user to use a touchscreen or
radio control (RC). A natural language interface can flexibly
interpret the user’s desires without requiring that a novice
user become proficient in a specialized system interface.
After a user specifies their goal using language, the robot
can understand these instructions and engage in autonomous
planning to follow the instructions while avoiding obstacles.

Command line and programming APIs are traditional
interfaces used to control a robot, but they require the human
user to have expertise in using a complex system interface.
The current state of the art in commercial drone interfaces is
a tablet or smartphone interface, or an RC controller [1, 2].
Current natural language interfaces require a predefined
model of the environment including landmarks [3, 4], which
is difficult for a drone to obtain. For example, given the
instruction “Fly around the wall to the chair and take a
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Fig. 1: An example of a task-oriented navigational command
given to a drone through the MR interface with language.
The scene is clear when displayed via the HoloLens.

picture,” the drone must already have a model of the wall and
the chair to infer a policy. More recent approaches tackle this
problem using Mixed Reality (MR) technology, powered by
products like the HoloLens [5] to control a drone in hidden
areas with gaze and gesture [6]. However, to the best of
our knowledge, MR has not been used to give high-level
language commands to a drone.

We address these interaction problems by using natural
language within MR to provide an intuitive high-level in-
terface for controlling a drone using goal-based planning.
By using MR, a user can annotate landmarks with natural
language in the drone’s frame of reference. The process starts
with the MR interface displaying the virtual environment of a
room that can be adjusted to overlay on physical reality with
gestures. Afterward, the user can annotate landmarks with
colored boxes using the MR interface. Then, when the user
sends a command, we use the I-DRAGGN framework [4, 7]
to translate this natural language text to a reward function
in the Markov Decision Process (MDP) domain. Finally, the
drone built with a Raspberry Pi, called PiDrone [8], generates
a trajectory using planning, while also localizing itself to
determine its current position. The systems we use during
this process are the HoloLens for the MR environment, a
base station for language mapping and MDP solving, and
Robot Operating System (ROS) [9] for communication with
the drone.

To train and evaluate the language understanding system,
we collected data using Amazon Mechanical Turk (MTurk).
After recording simulation videos with AirSim [10], we
asked the workers to give a possible natural language com-
mand that would result in the execution of the observed
behavior. We collected two datasets, one for action-oriented
tasks which require the workers to give primitive instructions.



The other is for goal-oriented tasks, which requires the
workers to give higher-level descriptions. Our trained model
obtains high accuracies for both action-oriented (94%) and
goal-oriented commands (95%).

Further, we conducted an exploratory user study to com-
pare the low-level 2D interface with two MR interfaces.
Overall, we found that our MR system offers a user-friendly
approach to control a drone with both low-level and high-
level instructions. The language interface does not require
direct, continuous commands from the user. Instead, users
give an initial language command to the drone as shown in
Fig. 1, and then it executes that command autonomously.
Overall, the MR system does not require the user to spend
as much time controlling the drone as with the 2D interface.

II. RELATED WORK

Natural language is the primary mode of communication
for humans, with the additional communicative help of
gesture and gaze. This makes natural language an obvious
approach to controlling a drone. The question of how to
effectively translate between natural language instructions
and robot behavior has been widely studied in previous work
[11, 12, 13, 14, 15, 16, 17]. Some early work on converting
from natural language instructions to robot behavior was
conducted by mapping natural language to a formal logical
goal description and action language [18]. Some methods
provide models (such as MARCO [12] and DCG [19])
which connect natural language phrases to physical objects,
actions, and environments. Huang et al. [20] presented a
natural language interface to a drone, but required a complete
semantic map of the environment (including landmarks) in
advance. To fit the robot into the stochastic environment,
converting natural language to reward function in MDP has
been proposed by MacGlashan et al. [15]. Additionally,
Karamcheti et al. [4, 7] introduced I-DRAGGN framework,
which is used in this paper to convert human language to
drone behavior. All of these previous studies have required an
a priori model of landmarks in the environment. By contrast,
our approach with MR does not require an a priori model of
landmarks, but instead users can specify virtual landmarks
whose groundings are known by the language model. This
interface enables the landmark objects to be specified in the
drone’s global frame such that it can interpret commands
without a complete model of the environment.

Most previous user interfaces require users to control
drones via RC controllers. This type of control typically
requires sufficient skill and experience to proficiently operate
a drone, which is a notable barrier to use for novice,
untrained users [21]. These specialized interfaces are not
necessarily intuitive for inexperienced users, as they are low-
level forms of control. Commercial drones like Skydio [1]
and DJI [2] use phone apps to control the drone. However,
as a drone has 6 degrees of freedom, a 2D interface is not
the most intuitive way to command it.

Collaboration between humans and robots using MR is a
promising alternative to direct control via RC or phone apps.
MR provides a more intuitive, user-friendly visualization

than a 2D visualization tool such as Rviz [22]. Using MR
to control an arm or a drone is facilitated by the use of
gesture and gazes [6, 23]. Rosen et al. [23] presented an
MR interface to inform the user of a robot’s intent. Herrmann
and Schmidt [24] also proposed a gesture-based interface and
speech-based interface for teleoperating a drone via MR.

Sibirtseva et al. [25] used a combination of natural lan-
guage in an MR environment for reference resolution in a
human-robot pair task. However, this system uses a Wizard-
of-Oz approach to interpret the language, with a human-
in-the-loop to provide groundings between natural language
and object attribute tokens. By contrast, our approach allows
the drone to process and execute a user’s commands fully
autonomously.

III. APPROACH

We consider the problem of drone navigation in an envi-
ronment with objects and obstacles. Our system allows a
human operator to give low-level instructions like “move
forward three squares,” or goal-oriented commands such
as “go to the chair and take a picture.” The drone then
interprets these instructions and follows the commands in
the environment. Our system combines existing modules,
such that the cognitive demands placed on human users are
relatively small. Our contribution is the design of the overall
interface which combines language grounding, planning,
MR, and robotics, together with an evaluation of the system’s
performance.

A. PiDrone

We required an autonomous drone that can localize itself
in an environment. We chose the PiDrone as our robotic
platform because it is a open-source system that is fully
customizable [8]. The drone is equipped with one downward-
facing camera. We also implemented localization with a
particle filter (Monte Carlo localization) [26]. The drone
flies over a highly-textured planar surface, and we use the
OpenCV library [27] to extract and detect Oriented FAST
and Rotated BRIEF (ORB) features. Each frame from the
camera, along with the altitude value from the infrared
sensor, are used to compute the bearing and the distance
from the last frame and to update the weights of particles
[26]. The general goal is to keep track of the drone’s position
constantly, and to match features from the current frame with
features from the current estimated position from the map
to update the location of the drone based on the matched
features. The drone will keep sending the current position
to the Mixed Reality system and the base station via ROS.
Although feature-based localization might not be as precise
as the OptiTrack motion tracking system, it simulates the
uncertainty of the real environment, and can be changed
to ORB-SLAM [28] with a high-performance drone in a
complex environment. For faster planning and language
grounding to specific discrete areas of the environment, we
chose to discretize our environment by creating a grid of
cells where each cell is 50 × 50 × 30 centimeters (width,
length, height).
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Fig. 2: The UI in Unity 3D. (a) Left UI shows the photo
captured by the drone. Right UI shows the voice input (seen
by the user as in Fig. 1). (b) The environment in MR.

B. Mixed Reality Interface

We use natural language, gaze, and gesture to control a
drone through Mixed Reality. The position of the drone is
provided by a localization method, and passed to the base
station through ROS. The physical world coordinates are then
translated into the grid-based coordinates of the MR world.
This allows us build a virtual grid model in Unity 3D and
deploy it on the HoloLens.

We use the spatial mapping from the HoloLens to map
the virtual grid model to the actual textured map. A manual
calibration process is used to align the drone’s coordinate
frame with the HoloLens’s frame. As studied in Hoenig et al.
[29], adding a connection between virtual and physical world
is helpful for the user to perceive the environment. The user
can also place or remove a virtual landmark at the location
they are looking at by voice command or by a tap gesture
in the air. It can also be dragged from one place to the other
with gesture. The landmark facilitates communication, as the
user is now able to instruct the drone to navigate to a specific
position by saying “go to the landmark” rather than giving
an explicit instruction.

As shown in Fig. 2, we created a push-to-talk language
input user interface (UI) in Unity 3D, which is adapted from
the HoloLens library. We used push-to-talk because the drone
makes significant noise in flight, which mistakenly triggers
voice activity detection in the built-in speech recognition sys-
tem. The user records their command with the UI and sends
the natural language command to the drone. We use Google’s
Speech API [30] to convert speech to text. Additionally,
we have a feedback UI which shows that the drone has
completed a photo-taking goal-oriented task by displaying
it when it is taken. The HoloLens will keep publishing the
position of the landmark and the natural language through
ROS. We use ROS-Sharp [31] to connect Unity 3D to ROS.

C. Markov Decision Process

We specify an MDP model to represent the drone’s en-
vironment and actions, which helps in planning the robot’s
behavior. The MDP is a five-tuple of 〈S,A, T ,R, γ〉. The
variable S is the state spaces of environment, A is the
action spaces of the drone, T denotes the state transition
probabilities, R defines the reward function for the drone to
enter in a specific state, and γ is the limit of the horizon
of the planner [32]. We use the simple-rl [33] as the MDP
solver to produce a policy which maps states to actions. The
goal is to maximize the total expected discounted reward.
As the policy depends on the reward function and the initial
state that is passed into the MDP solver, we can change
the location of the virtual landmarks and still follow the
command. We use the simple-rl library [33] to create and
solve an MDP domain.

The domain we use is shown in Fig. 2. This model
is adapted from the Cleanup Domain which is introduced
by MacGlashan et al. [15]. The environment contains a
“box”, an “obstacle”, and a “room”. The “box” represents
the virtual landmark. We assigned the attributes “color” and
“position” to objects, so that the user can send meaningful
tasks according to the environment. We use a propositional
space of reward functions to represent goal-oriented natural
language commands. For example, a command such as “take
a picture of the green box” translates to the propositional
function photoInDrone boxColor.

D. Language Model

The I-DRAGGN framework [4, 7] that we chose to employ
is a hybrid task-grounding language model that takes in
natural language commands and returns the corresponding
reward functions via recurrent neural network methods. We
preferred I-DRAGGN to other frameworks as it covered
both action-oriented and goal-oriented tasks and because it
showed better accuracy compared to other models listed
in Karamcheti et al. [4]. We used PyTorch 0.4.0 [34] to
complete this deep learning task. The reward functions
are broken down into a callable unit and an argument as
described in Karamcheti et al. [4]. A callable unit is akin
to a function that has arguments. This leads to improved
generalization in the generation of reward functions, as the
agent is capable of generating unseen function argument
pairs (the combination of callable unit and argument does not
appear in training data). For example, for an action-oriented
command such as “Go backwards 5 spaces,” a callable unit
would be back and the argument would be 5. Similarly, for
a goal-oriented command such as “Take a photo of the blue
box and move to the green room,” a callable unit would be
photoInDrone agentInRoom and the argument would
be blue green.

Before collecting data, we picked out callable units and
argument possibilities. In total we identified seven suitable
action callable units (six directions of movement and take a
photo) and three suitable goal callable units (take a photo of
box, go to a colored room, and the combination of them).
With the dimensions of the initial environment 7 × 7 × 4,



Goal Action Unseen Action

Raw Data 65.6±4.0% 84.6±1.2% 67.3±5.5%
Pruned Data 95.0±0.47% 94.0±0.8% 94.0±0.8%

TABLE I: Accuracy results of the I-DRAGGN language
model for Goal-oriented, Action-oriented, and Unseen
Action-oriented commands. The factorized structure of the
I-DRAGGN framework allows for generalization to unseen
commands.

this made 31 action callable units to argument combination
and 15 goal callable units to argument combination.

In order to collect the natural language to reward function
data we used Amazon Mechanical Turk. We created 53
videos via AirSim [10]. We asked the workers to provide
a natural language command that they thought would cause
the drone to carry out the behavior observed in the video.
Since goals have previously shown lower accuracy [4], we
aimed for a higher ratio of goals to actions data. In total, our
corpus has 2480 action and 1200 goal sentences.

Certain modifications to the Deep Learning model were
made in order to improve accuracy, with two layers of GRU
[35]. Specific parameters also had to be adjusted, such as 15
epochs, a learning rate of 0.01, an embedding size of 25, a
dropout probability of 0.1, and a batch size of 32.

E. Grounding Module

Once the reward function is received by the base station,
for action-oriented or goal-oriented tasks, the base station
sends primitive actions to the drone after planning. For a
goal-oriented task, a sequence of actions are sent and for
action-oriented only a single command is sent to the drone.

IV. EVALUATION

Our evaluation aimed to assess the effectiveness of our
approach at enabling natural language interaction, and to
compare our approach with conventional interfaces using
objective metrics (i.e., speed and quality of task completion)
and subjective metrics (i.e., usability).

A. Corpus-based Evaluation

First, we assessed the effectiveness of the language under-
standing system at interpreting commands from 290 Amazon
Mechanical Turk workers on a test-set. We collected a corpus
with 2480 action commands and 1200 goal commands, and
we refer to this as the “raw data.” We cleaned this raw
dataset as some annotators specified extraneous environmen-
tal objects unrelated to the task itself. We removed these
extraneous words or tokens from the dataset to create a
pruned corpus. We present results on both the raw and the
pruned corpus in Table I. We made a 90-10 partition for the
goal-oriented and vanilla action-oriented training and testing
datasets. For unseen action-oriented commands, we set 2240
data points for training and the rest for testing as only unseen
combinations could be in the testing dataset.

Differences in accuracy can be seen in Table I. We found
that the learner has an easier time predicting commands seen
previously and is capable of generalizing to unseen action

commands given the factorization of the I-DRAGGN archi-
tecture. We also noticed an improvement in goal-oriented
commands’ accuracy with a higher goal to action data point
ratio.

B. Demonstration

To demonstrate our interactive system, we set the
workspace of the drone to be a 2 × 2 m surface. We set
60 cm to be the maximum distance from the ground, which
is limited by the infrared sensor that the PiDrone is using. We
created a grid-based environment. As the width and length
of PiDrone is about 30 cm, we set each cell in the grid to be
a 50×50 cm cube. If there is no command, the drone hovers
at the center of the cell. Due to the lack of stability of the
PiDrone and the cell’s small size, the drone cannot stay stable
in the target cell all the time, but the localization module
enables the drone to correct its location. We have a 4×4×2
grid, as we adapted the environment from Cleanup Domain
[15], and we have three rooms. We have color attributes for
each room (red, green, blue). The red room connects the
green room and the blue room, as can be seen in Fig. 2.

To simplify the learning for the user, who does not have
experience with the drone, we avoided jargon like “roll,”
“pitch,” and “yaw”; instead, we use direction commands like
“forward” and “turn right”. For example, when the user says
“move forward three squares,” a ROS message is sent to the
drone and works with its localization module, so that the y
coordinate of the target position of the drone is increased by
1.5 m. Then, the drone flies to the target position.

When the drone performs the task, it moves cell by cell.
If take photo is required, the drone will fly lower or higher
based on the altitude of the box. This mimics a take photo
task in the real world, where the user might want to have an
image closer to the scene or have a wider view of the scene.
A video demonstration of the end-to-end system is available
online1.

C. User Study

To understand how the MR and language interface works,
we conducted an exploratory user study to compare our MR
system, with and without natural language, to a baseline
web control interface. Nine adults recruited from Brown
University participated in the study. Participants received a
$20 Amazon gift card as compensation for an expected 60
minutes of participation time.

Each participant used all three system interfaces within-
subject (web interface, MR interface without language, MR
interface with language) and completed the same three goal-
oriented tasks using each interface. The three interfaces were
presented to participants in random order, however partici-
pants always completed all three tasks for each interface in
the same order.

1) Procedure: After obtaining participant consent, we
introduced the first interface. We allowed the participant to
explore the interface for two minutes to become comfortable

1https://youtu.be/T70b7Y7LW7Q

https://youtu.be/T70b7Y7LW7Q
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Fig. 3: Web Interface. (a) The user’s view of the web
interface. (b) The web interface to control the drone. The
user can input the keyword command through the text box.
The left window is the live stream which captures images
below the drone. The right window is the captured image
once the user gives the “take photo” command.

with the system. Next, participants completed each of the
three tasks in order. For each task, we recorded the command
time (the time it took participants to instruct the drone for
the task) and the execution time (the time it took the drone to
execute the task). After completing all three tasks for a given
interface, the participant completed the System Usability
Scale (SUS) [36] for the interface. Participants completed
the same sequence for the two remaining interfaces.

2) Task: We created three goal-oriented tasks that par-
ticipants completed across all three interfaces. In Task 1,
participants were instructed to command the drone to take
a photo of a rubber ducky in the environment. In Task 2,
participants were instructed to command the drone to move
to a room with a specific color. In Task 3, participants were
instructed to command the drone to take a photo of a rubber
ducky and then move to a room with a specific color.

3) Interface: We describe the three interfaces next.
• Web Interface: The web interface allows the user to

control the drone freely without the localization module.
They can use the keyboard to command the drone to
fly forward, back, left, right, up, down, and take a
photo. The advantage of this interface is that use of
the keyboard is familiar to novice users, especially for
users who have ever played a computer game (e.g.,
a computer game where the user controls a car). In
this interface the participant does not have any visual
aids, but instead only sees physical cubes on the map
which represent the obstacles. As this interface does not
have planning and only allows the user to use low-level

(a)

(b)

Fig. 4: MR without language model. After the user says
“create box,” “take photo,” and “send task,” the drone moves
to the box and takes a photo. (a) The text in the image reads:
“Step: 1 take photo Sent !” The text appears one word at
a time. The text is clearly readable when displayed in the
HoloLens. (b) A sample picture that would be taken by a
participant in Tasks 1 and 3.

actions, the participants are instructed that the drone is
not allowed to cross the wall as shown in Fig. 3.

• MR without Language Model: This interface is similar
to the one we proposed and described in Section III,
except that it does not include our language model.
Like the MR system with language model, it still uses
a verbal keyword recognition system from HoloLens to
receive predefined phrases (which can be replaced by
a button) and the MDP solver to navigate. However, it
cannot take natural language sentences to execute high-
level commands and instead requires the user to put
individual landmarks for the drone to plan to, while
avoiding obstacles. In addition, a “take photo” label can
be added to the box, to instruct the drone to fly to the
box and take a photo of it. Fig. 4 shows how a user
can command the drone to complete the task “take a
photo of a cell.” Such an interface is similar in spirit to
the idea of robot end user programming [37, 38], albeit
within an MR environment.

• MR with Language Model: This interface combines
goal-based MDP planning with natural language input,
as described in Section III.

4) Results: We evaluated the three interfaces based on
the time it took participants to command the drone in each
task (reflecting the amount of attention required when using
each interface), as well as on the time it took the drone to
complete the task. In addition, we assessed users’ experience
of each interface, and measured system usability via the



System Usability Scale (SUS).
Across all three interfaces, participants were fastest to

command the drone via MR without language, followed by
slightly longer times to command via MR with language,
and then by the longest times to command the drone via the
web interface (Fig. 5). This is true across all three tasks:

• In Task 1, command via MR without language (M =
8.79, SD = 2.72) was faster than via MR with language
(M = 18.28, SD = 2.93), which were both faster than
via the web interface (M = 27.09, SD = 5.40).

• In Task 2, command via MR without language (M =
5.98, SD = 2.28) was faster than via MR with language
(M = 10.64, SD = 2.95), which were both faster than
via the web interface (M = 17.24, SD = 4.42).

• In Task 3, command via MR without language (M =
12.19, SD = 7.49) was faster than via MR with language
(M = 17.92, SD = 4.29), which were both faster than
via the web interface (M = 25.76, SD = 8.27).

Overall, the command times indicate that participants were
able to command the drone more quickly via the MR
interfaces, with control via the web interface taking longer
to command the drone. These are promising initial findings
in support of the relative ease of use of the MR interface
over the web interface; the reduced amount of time that
a user needs to spend controlling the drone frees human
users to attend to other important tasks (such as providing
oversight to the drone). Since the MR interface uses a goal-
based system, with language as input, participants are able
to control the drone intelligently and naturally. The system
is in part limited by the state of the art of Google’s Speech
API, which cannot capture every sentence from participants
accurately such that they had to repeat commands sometimes
due to the loud sounds from the motor and propellers of the
drone. This may partially account for why MR with natural
language was not quicker to command the drone than the
MR without natural language.

As can be seen in Fig. 5, the execution times for the
MR interfaces were substantially longer than for the web
interface (where the execution time and command time are
one and the same). That is, after the drone received the
commands via the MR interfaces, it took considerable time
to actually execute the command and navigate through the
environment. However, this is not a critique of the interface
itself, but rather a limitation of the robotic platform we used
in this study. The PiDrone is a low-cost drone with limited
computing power and battery, which limits its localization
capacity; with a more expensive, advanced drone it would
be possible to cut the execution time drastically.

We also assessed users’ experience of system usability
with the SUS. All three systems fared well on system
usability, with nearly-equal, high average system usability
according to the SUS scores across the board: MR with
language (M = 85.83, SD = 11.04), MR without language
(M = 83.61, SD = 18.25), web interface (M = 84.44, SD =
12.30). Although we note the sizable standard deviations of
the SUS scores, overall the SUS scores suggest that the MR
system was no more burdensome than the web interface.

Fig. 5: The bars show the average time (in seconds) required
to complete each of the three tasks across all three interfaces.
Each bar consists of the time to command the drone and the
time for the drone to execute. However, for the web interface,
the command times and execution times are one and the
same (displayed as the solid blue bars), as the web interface
involves continuous direct control of the drone.

V. CONCLUSION

In this paper, we offer a mixed reality interface for
controlling a drone with natural language. We demonstrated
this system on a real robot and conducted a corpus-based
evaluation, as well as an exploratory user study, to assess
the system’s effectiveness. The mixed reality interface allows
people to provide landmarks that they can then refer to by
using the natural language interface, which enables people to
command drones with higher flexibility. Also, when using the
MR interface people can simultaneously observe the drone
and the environment while planning the task and giving com-
mands, as compared to being forced to do these sequentially
via other 2D and 3D interfaces. In our exploratory user study,
we found that users were able to command the drone more
quickly via both MR interfaces (with and without language)
as compared to the web interface, with roughly equal system
usability scores across all three interfaces.

Future work includes implementing the system on addi-
tional drones with larger workspaces and more complex flight
patterns. We also seek to expand the scope of the tasks
by letting users create more types of landmarks (including
obstacles and rooms), so the user can also build models for
specific environments and tasks. To improve the accuracy
of task understanding, we hope to combine the gesture and
language model [39] to allow the user to adjust landmarks to
correct the actions of the drone and provide more intuitive
communication between human and robot. Moreover, more
visual cues could be added to the system to support the
interactive execution of a plan [40, 41]. Our mixed reality
interface is a promising step towards increasingly intuitive
communication via natural language with robotic systems.
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