
End-User Robot Programming Using Mixed Reality
Samir Yitzhak Gadre1, Eric Rosen1, Gary Chien1, Elizabeth Phillips1,2, Stefanie Tellex1, George Konidaris1

Abstract—Mixed Reality (MR) is a promising interface for
robot programming because it can project an immersive 3D
visualization of a robot’s intended movement onto the real world.
MR can also support hand gestures, which provide an intuitive
way for users to construct and modify robot motions. We present
a Mixed Reality Head-Mounted Display (MR-HMD) interface
that enables end-users to easily create and edit robot motions
using waypoints. We describe a user study where 20 participants
were asked to program a robot arm using 2D and MR interfaces
to perform two pick-and-place tasks. In the primitive task, par-
ticipants created typical pick-and-place programs. In the adapted
task, participants adapted their primitive programs to address a
more complex pick-and-place scenario, which included obstacles
and conditional reasoning. Compared to the 2D interface, a
higher number of users were able to complete both tasks in
significantly less time, and reported experiencing lower cognitive
workload, higher usability, and higher naturalness with the MR-
HMD interface.

Index Terms—Robot Programming, Visual Programming,
Mixed Reality, Augmented Reality, Human-Robot Interaction

I. INTRODUCTION

For robots to become widely used, humans must be able
to program their actions. For example, consider the task of
binning items. A roboticist might accomplish this task by
specifying a series of waypoints in computer code for the
robot to visit one by one. If the action needs to be modified,
the roboticist would modify the waypoints specified in the
code, changing the motion. This method is widely popular, but
will not work for end-users. The abstraction of breaking down
actions into a series of waypoints could be communicated,
but requiring the use of programming languages to specify
those waypoints is beyond their scope. Therefore, we will need
an alternate method of interfacing with the waypoint action
system.

Visual programming is one such methodology. A broad
term, visual programming refers to a class of interfaces where
objects, variables, classes, etc. are represented as visual shapes,
and interacted with accordingly [1]. Visual programming has
been a popular tool for programming computers by non-
programmers in visual art [2], audio production [3], and
education [4] because it allows users to focus on algorithmic
thinking, rather than the syntax needed to express their intent.

In the world of robotics, RViz and the Interactive Markers
package [5] allow for the creation of visual programming
interfaces that control and visualize a robot. Robot researchers
have also investigated how effective visual programming is by
creating and evaluating their own frameworks [6]. Using our
binning task from before, it would be possible to create and

1 Computer Science, Brown University
2 Behavioral Sciences and Leadership, United States Air Force Academy

(a) A screenshot from the MR
perspective of a user program-
ming a robot motion. Users are
able to specify green waypoints.

(b) After creating the waypoints,
users are able to visualize the
robot arm motion that is planned
through the waypoints.

Fig. 1: Our system’s operation, showing the MR interface.

modify waypoints visually in a keyboard and mouse interface,
but users do not see the waypoints overlayed on the real robotic
environment.

In this work, we propose an end-user mixed reality-based
visual programming framework for creating and modifying
waypoints to create complex, multistep robotic actions (Fig.
1). Users are able to specify and group waypoints together
to create primitive motions, as well as adapt these waypoints
to perform similar tasks. Our interface allows users to also
visualize the entire motion the robot plans to perform through
the waypoints, as well as have the robot execute it in real
life. We use a commercially available Mixed Reality Head-
Mounted Display (MR-HMD), the Microsoft HoloLens [7].

While the MR-HMD at first seems to pose only advantages
over other visual programming interfaces by combining the
robot workspace and the GUI space for the end-user, there
are limitations to the technology that do not make the MR-
HMD obviously preferable to a 2D interface. For example,
the HoloLens has a limited field of view, so it relies on the
user to move around to get a full view of the MR scene.
Furthermore, imperfect hand tracking via computer vision
makes selection and dragging gestures less reliable than mouse
clicks, especially for the novice HoloLens users.

Hence, we conducted a user study with 20 participants
and compared the effectiveness of using a MR interface for
programming two similar pick-and-place tasks against a 2D
visual programming interface. In the first task, participants
programmed primitive robot motions to pick up a block and
place it on a platform. In the second task, participants adapted
their primitive robot programs to sequentially pick-and-place
two cubes on different platforms. Our results show that com-



pared to the 2D interface, a higher number of users were able
to complete both tasks in significantly less time. Furthermore,
users reported experiencing lower cognitive workload, higher
usability and higher naturalness with the MR-HMD interface.

II. RELATED WORK

The traditional way to program a robot is to write code.
ROS [8] is an extremely powerful middleware environment
for roboticists. ROS includes packages to allow programmers
to use languages like C++ and Python to interface with robot
hardware. However, leveraging the expertise of end-users that
lack software engineering skills would help make robots more
widely accessible to everyone.

ROS also includes many graphical user interfaces (GUIs),
such as RViz [5], for visualization. Rviz can display robot
sensor data on a 2D screen and can be connected to MoveIt!
[9] motion planners to enable users to program robot move-
ment via keyboard and mouse. 2D interfaces have been shown
to be useful for robot programming, but have their own
shortcomings regarding immersiveness and intuitiveness. They
force users to interpret 3D information on a 2D platform and
use control interfaces that do not match how users interact
with the world.

Alexandrova et al. [6] created a 2D visual programming
language, RoboFlow, to enable end-users to easily pro-
gram mobile manipulators to perform general tasks in open-
environments. Action editing was important to resolve errors
[6].

Alexandrova et al. [10] developed a framework that enables
users to provide one demonstration of a task to a robot and
then use an intuitive monitor and mouse interface to edit
demonstrations for adaption to new tasks. Elliott et al. [11]
extended this work to allow for the grouping of several poses
relative to landmarks or objects in the scene. Having an
intuitive interface for non-experts to edit example motions for
robots is especially important in LfD, where collecting many
examples needed for learning is not always feasible. In such
cases, a more preferable method may be to have the human
perform one general demonstration of the task, and then have
the human adapt parts of their programmed action for new
environments. Both Alexandrova et al. [10] and Elliott et al.
[11] used a 2D monitor interface to adapt robot programs.

Language is a well-studied modality for programming
robots because it is one of the main ways humans communi-
cate commands to each other. Language has been shown to be
an efficient way to parameterize a task through descriptions
of key items and locations in the environment [12]. Forbes
et al. [13] developed a natural language interface to allow users
to program robot motions via Learning from Demonstration
(LfD). However, using language to program robots results
in many limitations. For example, Forbes et al. [13] studied
basic object manipulation tasks that required robot action
classes that could easily be identified through natural language.
However, tasks that rely on actions that are harder to describe
can make language a noisy and difficult interface to robots.

Whitney et al. [14] compared a virtual reality (VR) interface
against a 2D monitor interface for teleoperating a robot to
perform a cup-stacking task. Whitney et al. [14] found that
users had a significantly easier time using the VR headset,
because they could navigate and interact with the scene by
moving their head and hands naturally. This contrasts with
keyboard and mouse actions that a typical 2D interface pro-
vides. Like the VR headset, the MR-HMD allows users to
navigate and interact with the perceived environment using
natural actions. However, an additional benefit of the MR-
HMD is that it allows the user to also see the real world.

Rosen et al. [15] created an open-source ROS package, ROS
Reality, which enables robots to convey intent. The package
allows the robot to display its intended path as a holographic
time-lapse trail to a user wearing a MR-HMD. Rosen et al.
[15] conducted a user study to compare the speed and task
completion rate of novice participants using a HoloLens and
a 2D monitor interface to determine if a proposed robot
trajectory would collide with the environment. They found that
the MR-HMD increased accuracy and lowered task completion
time. While Rosen et al. [15] showed the promise of using
a MR-HMD for visualizing robot motion to non-experts, it
did not address how effective MR-HMD is for programming
these motions. The HoloLens’s limited hand-gesture tracking
capabilities pose the possible issue that MR-HMD may not be
an effective interface for creating these robot actions.

Walker et al. [16] investigated different MR signalling
mechanisms for a drone to communicate with a human. They
found quantitative task efficiency was significantly higher
when using MR signals than when using physically-embodied
signals.

Ni et al. [17] evaluated the effectiveness of augmented
reality interface against traditional robot welding programming
methodologies. Virtual representations of the robot trajectory
were visualized over a 2D video feed of the real robot,
enabling novice users to use the augmented reality interface to
program new welding paths for the robot to act out. Ni et al.
[17] found that the augmented reality interface allowed users to
program robot actions more quickly and intuitively, especially
for users without prior computer-aided design knowledge.
However, augmented reality limits users by forcing them to
look away from the robot workspace, which poses safety issues
when collaborating with a robot in close-quarters. On the other
hand, MR-HMDs allow users to both provide visualizations
over the workspace and safely interact with the 3D GUI
components using hand gestures.

III. APPROACH

Our approach is the design of an MR-based interface that
allows users to specify waypoints in 3D trajectories. We
wanted to test if the notion of adaptation [10, 11] was made
more powerful when end-users could edit robot motion in the
real world. We therefore created a baseline 2D GUI and a MR-
HMD 3D GUI. Our contribution is evaluating the effectiveness
of using a MR-HMD interface for programming and editing



robot motion. However, our interface could be integrated with
a LfD algorithm to collect example demonstrations from users.

The following subsections address important features of our
approach. We discuss waypoints, groups, visualization, and
execution. At the lowest level, users program the robot by
creating waypoints through which it must move. These way-
points can be collected into groups, which can be visualized
in MR and executed in real life.

The waypoint (Fig. 1a) is the fundamental unit of pro-
gramming in a robot motion. A user adds a waypoint to
the tail of a sequence of end-effector poses (3D positions
and quaternions) that the robot arm must move through. A
waypoint is represented as a hologram of the end-effector,
which can be open or closed. For example, if an arbitrary
waypoint has state closed, then a command is sent to the
gripper to close after it has converged on the waypoint pose.
waypoints can be adjusted and deleted by the user.

A group (Fig. 1a) comprises a sequence of waypoints that
together form an action. Hence, every waypoint is associated
with a group. Groups are split into primitive and adapted
groups. Primitive groups are taken to be fundamental building-
blocks such as a generic pick-and-place action. After the
primitive motions are created, they can be altered—by moving,
adding, and deleting individual waypoints—to solve related
or more complex tasks. These altered primitives are adapted
groups.

Given a group, or a sequence of groups, it is possible to
visualize the path that the robot arm will take from waypoint
to waypoint (Fig. 1b). Visualization allows the robot to convey
how it will move through the specified waypoints in the form
of a holographic time-lapse trail. Visualization is key in the
editing process as it allows the user to further change an
adapted group if they are not satisfied with the trajectory.

Once a user is satisfied with the adapted groups, they can
execute it to make the robot arm move in the real world as
per the visualization. We use MoveIt! to make a plan from
waypoint to waypoint.

IV. SYSTEM

Implementation was split into front-end Unity code for the
HoloLens MR-HMD and back-end ROS code for MoveIt! and
the Baxter. The 2D monitor baseline used the same back-
end as the 3D interface. The front-ends were identical, except
that the 2D monitor interface displayed graphics on a screen
instead of holograms. Additionally, the 2D monitor interface
had a rendering of a point cloud of the workspace (Fig. 3a).

Unity code supported both GUIs. This code made requests
to the back-end as waypoints were altered, updated the robot
arm movement trails upon receiving motion plans from the
back-end, and sent execution requests to the back-end. In order
to visualize the robot model and 3D sensor data for the monitor
interface, we use ROS Reality [18].

The hologram of the Baxter was created by parsing and
rendering a Unified Robot Description Format (URDF). The
rendering of Baxter was overlaid on the real robot in a
calibration step.

(a) The primitive task. The user had to program the robot to 1)
pick up the cube, then bring it over the wall and 2) place it on
the platform.

(b) The adapted task. The user had to program the robot to 1)
pick up the cube from a new location, 2) place it on the same
platform, 3) pick up a second cube, and 4) place on a second
platform, all while avoiding walls.

Fig. 2: Our primitive and adapted tasks.

There were two slotted columns attached to the hologram
of the robot in the form of a manager menu (Fig. 3b). The
right column contained primitive groups and the left column
contained adapted groups. A user started by creating a primi-
tive. They could add waypoints or start a new primitive group
by clicking the “Add Gripper” and “New Group” buttons,
respectively. After creating primitives, the user could drag
groups to the left column where they became adapted groups.

The user could add and delete waypoints to alter the
primitive so that it was well suited for an adapted task. The
left column also acted as a run queue that executed the group
actions from top to bottom. By clicking the “Visualize” button,
a user was shown a movement trail that the order of the
adapted groups implied. By clicking the “Execute” button, the
user made the robot execute the desired motion.

The front-end used a websocket client, ROS# [19] to send
messages to the back-end. The client connected to ROS bridge
[20], which linked the front-end to the Baxter ROS network.
The client code marshaled data and sent it to the bridge. The
bridge published these messages to the desired ROS topics. If
the location, state, or existence of a waypoint was changed, a
message was sent to update the back-end’s knowledge of the
waypoint. The front-end also sent two other types of messages,
one to visualize a motion and one to execute a trajectory. Both
of these requests hit MoveIt! code. We used MoveIt! to create
a Cartesian plan through the waypoints of the various groups.
These plans were sent to the front-end via the Bridge Server.
If the end-user wanted to visualize the path, then the motion
plan was displayed as a movement trail on the front-end.
If the end-user wished to execute the motion plan, MoveIt!
communicated with Baxter to actuate its joints.



(a) The robot visualizing its
motion through waypoints in
our 2D interface. The manager
menu is not visible.

(b) A picture of the man-
ager menu included in both the
2D monitor and MR interface.
Users can add waypoints, create
primitive and adapted groups,
and visualize and execute mo-
tions.

Fig. 3: (a) Our 2D visual programming interface and (b)
manager menu for 2D and MR.

V. EXPERIMENT

The aim of our evaluation was to test the hypothesis that
the MR interface would be faster and easier to use than the
2D baseline interface. We conducted a user study asking non-
experts to program a 7 degree of freedom (7-dof) robot arm to
perform a primitive and adapted pick-and-place task using our
MR and 2D interfaces. Twenty users—15 male and 5 female—
participated in the study. We measured user task completion
times, system usability, subjective cognitive workload, and
perceived naturalness for both interfaces.

A. Task

Participants completed a primitive and adapted task (Fig.
2). In the primitive task (Fig. 2a), users were instructed to
program the robot to pick up a cube, bring it over a wall,
and place it on a platform. In the adapted task (Fig. 2b), the
participant was asked to program the robot arm to pick up the
first block from a new location, move it over the wall, and
place it on the same platform. As part of the adapted task, the
participant also had to pick up a second block, take it over
a wall twice the height of the first, and place it on a second
platform.

B. Interfaces

We compared two interfaces:
• Monitor Interface: Participants used a 2D monitor, key-

board, and mouse to program and edit robot motions (Fig.
3). Using this interface, a user navigated the virtual scene
and oriented the camera view in 3D spacing using a
combination of right mouse clicks, drags, and keyboard
button presses. To interact with the waypoint programming
interface, users were able to use the left-mouse button.
This 2D monitor interface framework is similar to that of
Alexandrova et al. [10] and Elliott et al. [11].

• Mixed Reality Interface: Participants used a HoloLens
to program and edit the robot motions. Users were able
to translate and rotate their perspective by simply moving
their head as they normally would. To interact with the
programming interfaces, users perform tapping and dragging
hand gestures on the GUI components shown in Fig. 1.

C. Study Design

This study used a within-subjects design where all partici-
pants performed both experimental programming tasks using
both interfaces. Participants were randomly assigned to the
order in which they used each interface to complete the pro-
gramming tasks. Furthermore, experimenters counterbalanced
the order of the two interfaces across study participants. For
each interface, participants performed first the primitive task,
then the adapted task.

D. Experimental Procedure

Participants began the study by reviewing the informed
consent information. After they agreed to participate in the
experiment, the experimenters explained the two tasks that the
users would be programming the robot to perform. In addition,
the experimenters explained the various components of the
programming interfaces as described in Section III. After the
users understood the task and how the programming interfaces
worked, users were randomly selected to first complete tasks
on either the 2D monitor or MR interface. For each interface,
users were taught the controls before completing the tasks.
Then, they moved on to the adapted task. In the adapted
task, users were able to access the successful motions they
had programmed in the primitive task and edit them to meet
their new goal. To record times, experimenters gave a 3-2-1
countdown to begin the task, at which point users were timed
for programming the necessary motions up to the point of
them having the robot execute the final programmed motion.
For both the primitive and adapted task, users were given five
attempts, where an attempt would be considered a failure if a)
the robot failed to sequentially place the cubes on the correct
platforms or b) if the robot arm ran into a wall while executing
a motion. If they succeeded, their best time of the five attempts
was recorded. After completing both the primitive and adapted
tasks, users filled out all usability, workload, and naturalness
surveys for that interface, and then moved on to the other
interface condition.

E. Dependent Measures

Our objective dependent variables were the task completion
rate of completing each of the the programming tasks and the
task completion times for both the primitive and adapted tasks.

If users were not able to create a successful robot motion
to complete the primitive task in a given interface, then that
user did not attempt the adapted task in that interface. Thus,
we report task completion rate in the primitive task for each
interface as the number of users who were able to have at least
one successfully programmed robot motion out of their five
tries divided by the total number of participants. Furthermore,



we report task completion rate in the adapted task for each
interface as the number of users who were able to successfully
program a robot motion out of five tries divided by the number
of people who had successfully programmed a robot motion in
the primitive task. The subjective dependent measures included
the NASA Task Load Index (NASA-TLX) [21], the System
Usability Scale (SUS) [22], and a survey intended to measure
user perceptions of the naturalness and usefulness of each
interface.

NASA-TLX: the NASA-TLX is a subjective measure of
perceived cognitive workload. Participants provide ratings of
their perceived workload while completing a task on six sub-
scales: mental demand, physical demand, temporal demand,
effort, frustration, and performance. Five of the sub-scales are
rated from 0 (very low demand) to 100 (very high demand)
and the performance sub-scale is rated from 0 (perfect per-
formance) to 100 (failure). For this experiment, the weighted
measure of paired comparisons among the sub-scales was
not included. See Moroney et al. [23] for a discussion. The
subjective cognitive workload score was calculated by taking
the average of the six sub-scale scores.

SUS: the System Usability Scale assesses overall system
usability by asking participants to rate ten statements on a 7-
point Likert-type scale from “Strongly Disagree” to “Strongly
Agree”. The statements cover aspects like system complexity,
consistency, and cumbersomeness among others. The SUS
scores are converted to a scale of 0 (low usability) to 100 (high
usability). See Sauro [24] for more detail on SUS scoring.

Perceived Naturalness Survey: the Perceived Naturalness
Survey was derived to measure how natural using the interface
felt to each participant. The naturalness of an interface has
been discussed as a necessary component of building good
user interfaces [25, 26] and can lead to positive outcomes
like better learning in computer mediated environments [27],
but little work has been done on how to directly measure
how “natural” an interface feels to a user. Prior work has
suggested that components of interface naturalness include
natural mapping—the ability of a system to map its control
to changes in the mediated environment in a natural and
predictable manner [25], as well as control, maneuverability,
direct connections, and salience of input and feedback to name
a few. This survey was a first attempt in measuring those
concepts of naturalness. The survey included items like, “It
was easy to understand how changes in the interface would
result in changes in the real-world,” “Using the interface, I
felt like I had full control over the robot,” “The interface
felt predictable,” and “The interface felt natural,” among
others. Participants responded to these statements using a 7-
point Likert-type scale that ranged from “Strongly Agree” to
“Strongly Disagree.” Scores on this measure were calculated
by taking users average response across the 11 items.

F. Hypotheses

Overall, we expected users to perform better (lower task
completion times, higher task completion rate, lower work-
load, higher usability and preference) on the MR interface

than the 2D monitor interface in both the primitive and adapted
tasks.

H1: Users will quantitatively perform better on the MR
interface than the 2D monitor interface for completing the
primitive task. Better performance is categorized as a) lower
task completion time and b) higher task completion rate.

H2: Users will quantitatively perform better on the MR
interface than the 2D monitor interface for completing the
adapted task. Better performance is categorized as a) lower
task completion time and b) higher task completion rate.

H3: Users will report higher subjective impressions of the
MR interface than the 2D monitor interface for completing the
primitive task. Better subjective performance is categorized as
a) lower reported workload, b)higher usability, and c) higher
perceived naturalness of the interface.

G. Results

1) Primitive and Adapted Task Completion: Two paired
samples t-tests were conducted to evaluate differences in
task completion times between the 2D monitor and MR
interfaces for both the primitive and adapted tasks (Fig.
4a). There was a statistically significant difference in mean
task completion times (in seconds) between the 2D interface
(M=189.44, SD=105.33) and the MR interface (M=132.50,
SD=92.40) on the primitive task, t(17)=2.77, p=0.013, Cohen’s
d=0.57. There was also a significant difference in mean task
completion times between the 2D (M=263.98, SD =123.88)
and MR (M=145.28, SD=108.43) interface for the adapted
task, t(17)=5.656, p <0.001, Cohen’s d=1.02. Additionally,
all participants (100%) were able to complete the primitive
and adapted tasks using the MR interface. On the other hand,
fewer (N=18) participants were able to complete the primitive
task using the 2D interface. Since these participants were not
able to complete the primitive task, they were unable to adapt
that plan in the adapted task. Thus, they did not complete
either. Using the MR interface, participants completed both
the primitive and adapted tasks faster than in the 2D interface
and with higher task completion rate. Thus, Hypotheses 1 and
2 were supported.

2) Workload: Statistically significant differences were also
found between subjective ratings of mental workload between
the 2D and MR interfaces (Fig. 4b), t(19)=4.07, p =0.001,
Cohen’s d=0.93. Participants reported significantly lower cog-
nitive workload using the MR interface (M=31.54, SD=15.69)
than the 2D interface (M=46.13, SD=15.59).

3) Usability: Participants also reported significantly higher
usability scores for the MR interface (M=5.8, SD=0.67) as
compared to the 2D interface (M=3.82, SD=1.37), t(19)=7.73,
p <0.001, Cohen’s d=1.83 (Fig. 4d).

4) Naturalness of the interface: Finally, participants also
reported that interacting with the MR interface (M=47.75,
SD=21.73) felt significantly more natural than using the 2D in-
terface (M=76.75, SD=15.88), t(19)=8.72, p <0.001, Cohen’s
d=1.52 (Fig. 4c). Taken together, the results of the subjective
measures of workload, usability, and perceived naturalness
support Hypothesis 3.



(a) Task completion times for
each interface/task.

(b) NASA-TLX scores for
monitor and MR

(c) A graph of the results from
our Naturalness Survey.

(d) A graph of the results from the
SUS Survey.

Fig. 4: A figure of selected quantitative and qualitative results. Standard error is shown on the bars.

5) Order effects: Additionally analyses were conducted to
test whether the order in which participants interacted with
each interface biased the results. There were a few results
affected by order. First, if participants interacted with the
2D interface after interacting with the MR interface, they
rated the 2D interface significantly lower on usability than
participants who interacted with 2D interface first. This result
may suggest that participants were disappointed or frustrated
by the 2D interface after having first interacted with the MR
system, mean difference=23.31. t(18)=3.17, p=0.008, Cohen’s
d=1.46. A look at the frustration subscale of the NASA-
TLX revealed that participants did indicate significantly higher
frustration scores for the 2D interface as compared to the
MR interface, t(19)=4.13, p=0.001, Cohen’s d=1.27, mean
difference=31.5. Similar results were found for the perceived
naturalness measure. If participants interacted with the 2D
interface after interacting with the MR interface they rated
the 2D interface significantly lower on how natural the inter-
face felt than participants who interacted with the interfaces
in the reverse order, t(18)=4.29, p=0.002, Cohen’s d=2.00,
mean difference=1.98. The inverse was also true for perceive
naturalness of the MR interface. If participants interacted with
the MR interface second, then they rated the MR interface sig-
nificantly higher on the measure of naturalness of the interface
than participants who interacted with the MR interface first,
t(18)=2.45, p=0.033, Cohen’s d=1.14, mean difference=0.69.

VI. DISCUSSION

Overall our results strongly support the potential to use
MR interfaces for novice users to program and adapt robot
motions. In our user study, participants were significantly
faster and better able to complete the programming tasks
using the MR interface than the 2D keyboard and mouse
interface. In addition, participants reported lower levels of
cognitive workload (e.g., frustration, effort, mental, temporal,
and physical demand) in the MR interface. Users reported that
the MR interface felt more usable and natural when completing
the programming tasks. Our findings on the order of comple-
tion may also reveal the subjective appeal of using the MR
interface as well. If participants used the 2D interface after
interacting with the MR interface they rated the 2D interface
significantly lower in usability and naturalness than if they

had not been exposed to the MR interface first. The opposite
was also true, if participants used the MR interface after
having been exposed to the 2D, they rated the MR interface
significantly higher than if they had not previously worked
with the 2D interface. These findings may suggest that when
participants had an opportunity to compare the 2D interface
to the MR interface, they greatly favored the MR interface or
became frustrated with the 2D interface after having worked
with the interface that was easier to use. These findings are
promising for implementing programming interfaces that are
quick and easy for non-roboticists to use, may represent a
large improvement over the more cumbersome keyboard and
monitor interfaces, and represent a clear path forward in the
development of next generation robot programming interfaces.

VII. CONCLUSION

This paper contributes to the study of using MR-HMDs
for end-user robot programming. We describe how our system
works, including how different parts of our programming
interfaces are visualized and interacted with by users working
on a 7-dof robot arm. We evaluated the effectiveness of using
our MR system for programming and editing robot motions
in a primitive and adapted pick-and-place task against a 2D
monitor and keyboard equivalent. Our study showed that users
were able to more quickly and accurately program and edit
robot motions using MR than the 2D baseline. In addition,
users found that our MR interface required less workload, was
easier to use, and was more natural to use in comparison to
the baseline. This study shows the large promise MR has for
making robot programming more accessible to all end-users.

In the future we plan to investigate extensions to our inter-
face for LfD, to allow users to program robot demonstrations
with MR interfaces. We also plan to explore semantic mapping
MR interfaces, which allow users to use MR to annotate the
environment for a robot.

REFERENCES

[1] B. Myers, “Visual programming, programming by ex-
ample, and program visualization: a taxonomy,” in ACM
sigchi bulletin, vol. 17, no. 4, 1986, pp. 59–66.

[2] Blender Online Community, Blender - a 3D modelling
and rendering package, Blender Foundation, Blender



Institute, Amsterdam, 2018. [Online]. Available:
http://www.blender.org

[3] C. ’74, “Max software tools for media,”
https://cycling74.com/products/max/, 1985–2018.

[4] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk,
E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum,
J. Silver, B. Silverman, and Y. Kafai, “Scratch: Program-
ming for all,” Commun. ACM, vol. 52, no. 11, pp. 60–67,
2009.

[5] D. Gossow, A. Leeper, D. Hershberger, and M. Cio-
carlie, “Interactive markers: 3-d user interfaces for ros
applications [ros topics],” IEEE Robotics & Automation
Magazine, vol. 18, no. 4, pp. 14–15, 2011.

[6] S. Alexandrova, Z. Tatlock, and M. Cakmak, “Roboflow:
A flow-based visual programming language for mobile
manipulation tasks,” in IEEE International Conference
on Robotics and Automation (ICRA), 2015, pp. 5537–
5544.

[7] Microsoft, “Hololens,” 2016,
https://www.microsoft.com/en-us/hololens [Accessed:
2018].

[8] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote,
J. Leibs, E. Berger, R. Wheeler, and A. Ng, “Ros: an
open-source robot operating system.” in Open-source
software workshop of the Int. Conf. on Robotics and
Automation, 2009.

[9] W. Garage, “MoveIt!” 2007, https://moveit.ros.org/ [Ac-
cessed: 2018].

[10] S. Alexandrova, M. Cakmak, K. Hsiao, and L. Takayama,
“Robot programming by demonstration with interactive
action visualizations.” in Robotics: science and systems,
2014.

[11] S. Elliott, R. Toris, and M. Cakmak, “Efficient program-
ming of manipulation tasks by demonstration and adap-
tation,” in IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN), 2017.

[12] T. Kollar, S. Tellex, M. Walter, A. Huang, A. Bachrach,
S. Hemachandra, E. Brunskill, A. Banerjee, D. Roy,
S. Teller, and N. Roy, “Generalized grounding graphs
: A probabilistic framework for understanding grounded
language,” in Journal of Artificial Intelligence Research,
2013.

[13] M. Forbes, R. Rao, L. Zettlemoyer, and M. Cakmak,
“Robot programming by demonstration with situated
spatial language understanding,” in IEEE International
Conference on Robotics and Automation (ICRA), 2015,
pp. 2014–2020.

[14] D. Whitney, E. Rosen, E. Phillips, G. Konidaris, and
S. Tellex, “Comparing robot grasping teleoperation
across desktop and virtual reality with ros reality,” in
International Symposium on Robotics Research, 2017.

[15] E. Rosen, D. Whitney, E. Phillips, G. Chien, J. Tomp-
kin, G. Konidaris, and S. Tellex, “Communicating robot
arm motion intent through mixed reality head-mounted
displays,” in International Symposium On Robotics Re-
search, 2017.

[16] M. Walker, H. Hedayati, J. Lee, and D. Szafir, “Com-
municating robot motion intent with augmented reality,”
in ACM/IEEE International Conference on Human-Robot
Interaction, 2018, pp. 316–324.

[17] D. Ni, A. Yew, S. Ong, and A. Nee, “Haptic and visual
augmented reality interface for programming welding
robots,” Advances in Manufacturing, vol. 5, no. 3, pp.
191–198, 2017.

[18] D. Whitney, E. Rosen, D. Ullman, E. Phillips, and
S. Tellex, “ROS Reality: A Virtual Reality Framework
Using Consumer-Grade Hardware for ROS-Enabled
Robots,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2018.

[19] Siemens, “ROS#,” 2017, https://github.com/siemens/ros-
sharp, [Accessed: 2018].

[20] C. Crick, G. Jay, S. Osentoski, and O. Jenkins, “Ros and
rosbridge: Roboticists out of the loop,” in International
conference on Human-Robot Interaction, 2012, pp. 493–
494.

[21] N. H. P. R. Group, “Task load index (nasa-tlx) v1. 0
computerised version,” NASA Ames Research Centre,
1987.

[22] J. Brooke, “Sus-a quick and dirty usability scale,” Us-
ability evaluation in industry, pp. 189–194, 1996.

[23] W. Moroney, D. Biers, F. Eggemeier, and J. Mitchell, “A
comparison of two scoring procedures with the nasa task
load index in a simulated flight task,” in Aerospace and
electronics conference, 1992, pp. 734–740.

[24] J. Sauro, “Measuring usability with the system usabil-
ity scale (sus),” 2011, http://www. measuringusability.
com/sus.php [Accessed: 2018].

[25] P. Skalski, R. Lange, and R. Tamborini, “Mapping the
way to fun: The effect of video game interfaces on
presence and enjoyment,” in Proceedings of the Ninth
Annual International Workshop on Presence. Cleveland
State University Cleveland, OH, 2006, pp. 63–64.

[26] S. Ramm, J. Giacomin, D. Robertson, and A. Malizia,
“A first approach to understanding and measuring natu-
ralness in driver-car interaction,” in International Con-
ference on Automotive User Interfaces and Interactive
Vehicular Applications, 2014, pp. 1–10.

[27] S. Bailey, “Getting the upper hand: Natural gesture
interfaces improve instructional efficiency on a concep-
tual computer lesson,” Ph.D. dissertation, University of
Central Florida, 2017.


