
Formal Dialogue Model for
Language Grounding Error Recovery

Natasha Danas, Tim Nelson, Cobi Finkelstein, Shriram Krishnamurthi, Stefanie Tellex

Abstract—To enable humans to talk to robots, natural language
commands need to be grounded into a symbolic goal, such as
linear temporal logic, which the robot can then execute. However,
natural language is often ambiguous and commands are often
nuanced, making language grounding errors and robot mistakes
inevitable. We address this problem by enabling the robot to
ask questions that differentiate between the beam searched set
of k-most-likely groundings. Maximal semantic differencing, a
k-way extension to standard 2-way semantic differencing, allows
the robot to ask clarifying questions about the groundings via
differentiating trajectories, instead of asking about symbolic goals
the user is not trained to interpret. The user can then clarify
which trajectory satisfies their command, in turn clarifying the
correct grounding. We evaluate the beam search, maximal seman-
tic differencing, and user clarification components separately–
then extrapolate to estimate the performance and accuracy of
this dialog model as an end-to-end system in practice. With 1-2
seconds for high-level trajectories (3-20 seconds for 8x8 low-level
grid-world trajectories), we expect the robot to recover from
about 80% to 94-99% accuracy for unseen natural language
commands, depending on user clarification accuracy.

I. INTRODUCTION

To enable humans to talk to robots, natural language (NL)
commands must be grounded into a symbolic goal. However,
NL is often ambiguous and commands are often nuanced,
making language grounding errors and the robot mistakes
inevitable. The current state of the art grounds these commands
into linear temporal logic (LTL) [7, 15]. A Markov Decision
Process (MDP) interprets the goal into a trajectory: concrete
examples of the LTL goal being satisfied (positive) or not
satisfied (negative) through particular robot behavior. The
commands are grounded via a neural network sequence-to-
sequence (seq2seq) model with attention that is trained to
handle arbitrary NL commands using data from a crowd-
sourced corpus.

The latest language grounding model [15] only achieves
about 80% accuracy on the unseen commands, with no re-
covery technique for the remaining 20%. Previous dialog
models have developed question-answer protocols to handle
ambiguity of environment observations and execution failures
[5, 16, 11, 1, 2, 18]. However, the generated questions are
either a closed finite set, or promise limited information gain.

We present the three individual components of a dialogue
model for the robot to recover from language grounding
errors by asking targeted clarifying questions, as shown in
Fig. 1. First, we implement beam search within the seq2seq
model to produce the k-most-likely LTL groundings for a user
provided NL command, for an arbitrary beam width k. Second,
we define and implement maximal semantic differencing to

Fig. 1. NL command, LTL groundings and differentiating trajectories.

identify differentiating trajectories between the k-most-likely
LTL formulae, to avoid asking the user about symbols they are
not trained to interpret. Third, we study crowd-sourced users’
ability to clarify whether a trajectory satisfies a provided NL
command. This clarification can be used to recover the LTL
formula that represents the trajectory and also satisfies the
original NL command.

We define maximal semantic differencing as change impact
analysis between any number of specifications, as opposed to
the standard semantic differencing between two specifications.
For example, semantic differencing can be used to look at the
change impact between two firewall policies: what packets
are dropped by one and accepted by the other, and vice-
versa [13]. For our use case, the specification is not a firewall
policy, but the robot’s environment, possible behavior, and LTL
goals; the change impact being the differentiating trajectories
that satisfy one LTL goal but not the others. We implement
maximal semantic differencing as a modification to a formal
methods tool already capable of performing standard semantic
differencing.

We measure the effectiveness of beam search, maximal
semantic differencing, and user clarification components sep-
arately by answering the following research questions:

1) How does increasing the number of most-likely ground-
ings increase accuracy?

2) How do the number of most-likely groundings and
abstraction-level of the environment affect the time to
perform maximal semantic differencing?

3) How quickly and accurately can users clarify whether a
trajectory satisfies a NL command?



We evaluate grounding variant accuracy by computing the
position of the correct LTL formula in the k-most-likely
groundings, for each NL command. The data is evaluated
using 5-fold cross-validation. Maximal semantic differencing
performance is evaluated over hand written specifications of
varying sized low-level grid-world environments; we also
evaluate a high-level environment with grid-points abstracted
out, as that level of detail is not necessary to produce differ-
entiating trajectories. We assess user clarification ability by
performing another crowd-sourced study on the NL commands
workers had trouble generating for the seq2seq training corpus,
except they now only need to discriminate between the given
command and trajectory. We extrapolate and estimate that for
a reasonably sized environment, with 1-2 seconds for high-
level trajectories (3-20 seconds for 8x8 low-level grid-world
trajectories), we expect the robot to recover from about 80%
to 94-99% accuracy for unseen natural language commands,
depending on user clarification accuracy.

II. RELATED WORK

Deits et al. [5] present an information-theoretic approach
for clarifying ambiguities in the NL command, while Tellex
et al. [16] present a graph-theoretic approach for communi-
cating environment induced robot execution failures. Both of
these approaches are complementary to our model-theoretic
approach, which clarifies ambiguities in the LTL groundings.

Lignos et al. [11] define a similar formal dialogue to our
approach, allowing a user to control a robot through a search-
and-rescue environment via NL commands. However, in the
case of a grounding error, their dialogue only points out the
parts of the NL command that need to be restated. Instead, we
have them discriminate between trajectories to avoid asking
the user to continually restate their intent.

Boteanu et al. [1] present a grounding model that can
synthesize full robot controllers, and verify that the resulting
controllers assumptions about the environment and the inter-
pretation of the user’s goals. However, the verification stage
cannot determine whether the instructions progress towards
the users intended goal. Our approach will improve accuracy
of interpreting the users intentions, putting us one step closer
to bridging this gap.

Boteanu et al. [2] use a formal methods approach to perform
goal repair for unsatisfiable scenarios using hard-coded NL
interactions to weaken contradictory assumptions about the
environment. In most cases, even incorrectly grounded goals
are often still satisfiable, and possibly equivalent to a correct
grounding, for a given environment. Our approach covers this
ignored majority of semantic error cases.

Whitney et al. [18] propose a FETCH-POMDP in which
the robot enumerates through the items they believe the user
wants them to retrieve, and asks whether each was the intended
item. Both the knowledge-base and question-answer protocol
are hard-coded, and cannot ask questions beyond the objects
they are specified for. Our approach can handle an arbitrary
set of LTL expressions for a given environment.

III. TECHNICAL APPROACH

We beam search the k-most-likely LTL groundings for a
given NL command, then perform maximal semantic differ-
encing to produce a set of differentiating trajectories, and
finally ask the user which instance is correct.

A. Grounding Variant Generation

We implement beam search within the seq2seq model to
produce the top-k likely LTL groundings for a given NL
command, for an arbitrary beam width k. Beam search is a
well known algorithm with long standing history in machine
translation systems [12]. While it is an incomplete search, the
additional cost of performing a breadth-first search with a log-
likelihood based branching heuristic is negligible, especially
for small beam widths. As reported in our evaluation, a beam
width of k = 10 suffices for effectively 100% accuracy
recovery, thus we did not investigate more sophisticated or
alternative search techniques.

B. Standard Semantic Differencing

Before the robot can identify differentiating trajectories for
the top-k candidate groundings that it can ask the user about,
we first introduce standard semantic differencing, which can
produce these trajectories for k = 2. Semantic differencing
can be specified within a model finder, a class of formal
methods tools which take a formal specification as input and
output models: concrete examples that satisfy the specified set
of logical constraints. The robot’s environment, behavior, and
goals are an input specification that is satisfied by a certain
set of concrete trajectories of the robot through the state/action
space. Note, the stochastic or partially-observable features are
left out of the environment specification, as these tools are
useful for knowledge bases and high-level planning– not for
low-level planning which is left to MDP-based approaches.

We compute semantic differences using the model finder Al-
loy [8]. Alloy turns each first-order relational logic constraint
into propositional logic, via its compiler named Kodkod [17].
The resulting propositional logic formulae are then passed
to a SAT solver [14], to find a satisfying assignment: the
model or trajectory. For example1, let us consider two possible
groundings for avoid room 1 until you go to landmark 1:
the correct grounding ((¬room 1) U landmark 1) and the
incorrect grounding ((¬landmark 1) U room 1).

We can semantically differentiate these goals by running
Alloy, to produce trajectories that satisfy both (describes com-
monality), and just one of each goal (describes independence).
In this case, the first run (A and B) is satisfiable, the second
run (A and not B) is unsatisfiable, and the third run (B
and not A) is satisfiable. By the results of these three runs,
we can conclude that notRoom1UntilLandmark1 implies
notLandmark1UntilRoom1 for this specific environment:
due to the fact Landmark1 is located in Room1. For other
pairs of LTL goals or other environments, we may instead
conclude that some goals are unsatisfiable (have no satisfying

1The specification has been omitted for space, but can be viewed here.

https://github.com/transclosure/logic/blob/master/collabrobo/gridworld_small.als


trajectories), are equivalent (same set of trajectories), are
partially disjoint (some common and independent trajectories),
or some goals are completely disjoint (only independent
trajectories).

C. Maximal Semantic Differencing

Given the top-k candidate groundings, the robot needs to
identify differentiating trajectories that it can ask the user
about. To compute these trajectories, we specify maximal
semantic differencing as change impact analysis between any
number of specifications, as opposed to just two. Our imple-
mentation enables us to turn a set of LTL formulae into a set
of trajectories that describe each formula most independently
from the others. We do this by extending Alloy to support soft
constraints, which can be optionally satisfied unlike the usual
hard constraints.

Fig. 2. Maximal semantic differencing as modified Alloy soft constraints.

We enable soft constraint solving by extending the under-
lying SAT solver to MaxSAT [6], which allows us to define
soft propositional constraints, that may or may not be satisfied
in the resulting model. Our particular implementation uses Z3
for MaxSAT, a performant theorem prover with a wide array
of features [4].

We enable soft constraint expression in Alloy, by defining
a new type of quantified formula (keyword soft) in the
lexer, parser, and abstract syntax tree. During the compilation
process, Kodkod caches each propositionally grounded subfor-
mula as a circuit, with a label, which is a propositional variable
only true if the circuit is also true. We simply cache the soft
circuits and labels separately, and make sure to write them
out as soft propositional clauses when the MaxSAT solver is
invoked. Alloy then produces models of the mix of hard and
soft constraints as usual.

D. Differentiating Trajectory Clarification User Study

Recall that the seq2seq model training data was gathered
via crowd-sourcing, specifically on Amazon’s Mechanical
Turk. Crowd-source workers are shown positive and negative
trajectories, who generate NL commands in return, which are
then associated with the hidden LTL formula that produced

the trajectories. In order to recover from language grounding
errors, the user need not generate the NL command, but simply
clarify which differentiating trajectory satisfies their command.

Fig. 3. Crowd-sourced command-trajectory discrimination task.

Since this discrimination task is easier than the generation
task posed to originally collect training data, we can assume
users are already capable of performing this task. To confirm
this, we further assess user feasibility by performing another
crowd-sourced study on the NL commands the crowd-source
workers had trouble generating. The workers are instead shown
trajectories, with already generated NL commands, and asked
to discriminate whether the trajectory is a positive or negative
example, as shown in figure 3. The study follows the method-
ology proposed in Danas et al. [3], where crowd-workers were
taught semantics of arbitrary Alloy specifications, presented in
natural language as opposed to first-order relational logic.

IV. EVALUATION

We evaluate language grounding accuracy for various beam
widths, measure maximal semantic differencing translation
and solve time for various environments, and assess user
feasibility by performing another crowd-sourced study on the
NL commands workers had trouble generating, except they
now only need to discriminate.

A. Grounding Variant Accuracy

Our first aim was to assess the ability of our beam search
implementation to recover the correct grounding in the top k
set. By expanding to a beam width of k = 10, the correct
grounding is in the set 98-99% of the time, compared to
78-80% taking only the top result. Thus our beam search
almost recovers from all of the original grounding error if
using an oracle to select the correct grounding. We have
effectively recovered from the one-shot generalization problem
for categorical grammar combinations, where either an LTL
operator or a primitive (room, landmark, etc) is the only
incorrect portion of the grounding.

The remaining test errors, as well as unseen output ex-
pressions of larger combinations, are more complex in size
and structure compared to the training data. For example,
“go to landmark one without leaving green room” should
ground to F (landmark 1)&G(green room); however, very
few command-grounding pairs in the training set involve this



Fig. 4. Beam width vs. accuracy (at least one correct grounding in beam).

many LTL operands and parentheses. We do not expect our
technique to work well in these cases, but a more qualitative
evaluation with principled choices in training data is required
to fully report on the generalization problems that remain.
Of course, combinatory categorical grammar (CCG) based
approaches will generalize better than our seq2seq approach
without requiring user intervention.

B. Maximal Semantic Differencing Performance
We break down maximal semantic differencing performance

into three metrics: translation time, UNSAT solve time, and
SAT solve time. We pay a cost of one translation time, plus
one solve time per variant, depending on whether the query is
satisfiable or not.

Fig. 5. Maximal semantic differencing performance for four specifications.

Since each query is either UNSAT or SAT, we can view
UNSAT solve time as a lower bound, and SAT solve time as
an upper bound. So, in order to process 10 groundings for an
8x8 grid-world, we have to wait 3-20 seconds to produce every
maximally independent low-level trajectory. However, we only
have to wait 1-2 seconds with the grid-points abstracted
out, as that detail is not necessary to produce differentiating
trajectories, and exponentially increases the size of the search
space. Additionally, an average of 1-2 groundings are usually
not grammatically correct, and can be thrown out before
performing maximal semantic differencing. Also, many of the
groundings end up being unsatisfiable, or equivalent to other
groundings, due to the context of the environment. In practice,
we expect performance to end up closer to the lower bound
than the upper bound.

C. User Ability to Clarify Differentiating Trajectories
We evaluate user feasibility by their accuracy in discrim-

inating whether a particular trajectory satisfies a given NL

command. We report the distribution of their average scores
on the 38 discrimination tasks given, for a sample size of
n = 100.

Fig. 6. Distribution of user command-trajectory discrimination accuracy.

While we have not performed a dip test, there appears
to be a bimodal distribution, with only one user with a
discrimination accuracy average between 68% and 74%. Addi-
tionally, the data bellow 68% accounts for 36% of the sampled
crowd-source workers, which aligns with the well-studied
40% proportion of disingenuous crowd-workers on Amazon’s
Mechanical Turk reported by Kittur et al. [10]. Thus, we can
conclude that a genuine user could clarify which trajectory
describes their originally uttered NL command 75-100% of the
time. This is also a more conservative estimate, as these users
did not utter these commands, and many commented on how
they would have stated the original NL command differently
themselves.

V. CONCLUSION

We expand our view from one NL-LTL grounding to the
k-most-likely groundings via beam search, perform maximal
semantic differencing in a modified model finding process
within Alloy that allows the robot to ask clarifying questions
about the groundings via differentiating trajectories instead
of logical forms. With 1-2 seconds for high-level trajectories
(3-20 seconds for 8x8 low-level grid-world trajectories), the
robot can now repair itself in almost all failure cases for
unseen commands. At this point, Alloy is the only weakness
in our approach, and there are many avenues of improvement.
Enabling incremental solving of multiple semantic differenc-
ing queries will reduce average query time by an order of
magnitude, as the SAT solver will not need to re-load and
re-solve much of the search problem shared between queries.
Taking a compositional approach [9] to map a differentiating
high-level trajectory to some low-level trajectory should be
faster than generating a differentiating low-level trajectory
directly. We may also be able to implement low-level maximal
semantic differencing directly into an MDP planner. Once we
overcome the current weaknesses of the individual compo-
nents, future work will perform a full end-to-end evaluation
and demonstration on a real robot.



RESEARCH ARTIFACTS

• Sequence-to-Sequence Grounding Variant Modifications.
• Alloy Soft Clause Modifications.
• Maximal Semantic Differencing Specifications.
• Differentiating Trajectory Clarification User Study.

REFERENCES

[1] Adrian Boteanu, Thomas Howard, Jacob Arkin, and
Hadas Kress-Gazit. A model for verifiable grounding and
execution of complex natural language instructions. In
2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2649–2654. IEEE,
2016.

[2] Adrian Boteanu, Jacob Arkin, Siddharth Patki, Thomas
Howard, and Hadas Kress-Gazit. Robot-initiated spec-
ification repair through grounded language interaction.
arXiv preprint arXiv:1710.01417, 2017.

[3] Natasha Danas, Tim Nelson, Lane Harrison, Shriram
Krishnamurthi, and Daniel J Dougherty. User studies
of principled model finder output. In International Con-
ference on Software Engineering and Formal Methods,
pages 168–184. Springer, 2017.

[4] Leonardo De Moura and Nikolaj Bjørner. Z3: An
efficient smt solver. In International conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[5] Robin Deits, Stefanie Tellex, Pratiksha Thaker, Dimitar
Simeonov, Thomas Kollar, and Nicholas Roy. Clarifying
commands with information-theoretic human-robot dia-
log. Journal of Human-Robot Interaction, 2(2):58–79,
2013.

[6] Zhaohui Fu and Sharad Malik. On solving the partial
max-sat problem. In International Conference on Theory
and Applications of Satisfiability Testing, pages 252–265.
Springer, 2006.

[7] Nakul Gopalan, Dilip Arumugam, LL Wong, and Ste-
fanie Tellex. Sequence-to-sequence language grounding
of non-markovian task specifications. In Robotics: Sci-
ence and Systems, 2018.

[8] Daniel Jackson. Software Abstractions: logic, language,
and analysis. MIT press, 2012.

[9] Eunsuk Kang, Aleksandar Milicevic, and Daniel Jackson.
Multi-representational security analysis. In Proceedings
of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages
181–192. ACM, 2016.

[10] Aniket Kittur, Ed H Chi, and Bongwon Suh. Crowd-
sourcing user studies with mechanical turk. In Pro-
ceedings of the SIGCHI conference on human factors
in computing systems, pages 453–456. ACM, 2008.

[11] Constantine Lignos, Vasumathi Raman, Cameron Finu-
cane, Mitchell Marcus, and Hadas Kress-Gazit. Provably
correct reactive control from natural language. Au-
tonomous Robots, 38(1):89–105, 2015.

[12] Bruce T Lowerre. The harpy speech recognition system.

Technical report, CARNEGIE-MELLON UNIV PITTS-
BURGH PA DEPT OF COMPUTER SCIENCE, 1976.

[13] Timothy Nelson, Christopher Barratt, Daniel J
Dougherty, Kathi Fisler, and Shriram Krishnamurthi.
The margrave tool for firewall analysis. In LISA, pages
1–18, 2010.

[14] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
Solving sat and sat modulo theories: from an abstract
davis–putnam–logemann–loveland procedure to dpll (t).
Journal of the ACM (JACM), 53(6):937–977, 2006.

[15] Yoonseon Oh, Roma Patel, Thao Nguyen, Baichuan
Huang, Ellie Pavlick, and Stefanie Tellex. Planning with
state abstractions for non-markovian task specifications.
arXiv preprint arXiv:1905.12096, 2019.

[16] Stefanie Tellex, Ross Knepper, Adrian Li, Daniela Rus,
and Nicholas Roy. Asking for help using inverse seman-
tics. Robotics: Science and Systems, 2014.

[17] Emina Torlak and Daniel Jackson. Kodkod: A relational
model finder. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
pages 632–647. Springer, 2007.

[18] David Whitney, Eric Rosen, James MacGlashan, Law-
son LS Wong, and Stefanie Tellex. Reducing errors in
object-fetching interactions through social feedback. In
2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 1006–1013. IEEE, 2017.

https://github.com/transclosure/ltl-amdp
https://github.com/transclosure/org.alloytools.alloy/tree/add-objectives
https://github.com/transclosure/logic/tree/master/collabrobo
https://github.com/transclosure/experimentr/tree/traces

	Introduction
	Related Work
	Technical Approach
	Grounding Variant Generation
	Standard Semantic Differencing
	Maximal Semantic Differencing
	Differentiating Trajectory Clarification User Study

	Evaluation
	Grounding Variant Accuracy
	Maximal Semantic Differencing Performance
	User Ability to Clarify Differentiating Trajectories

	Conclusion

