
Using Language to Generate State Abstractions for
Long-Range Planning in Outdoor Environments

Matthew Berg∗‡, George Konidaris∗, and Stefanie Tellex∗

Abstract— Robots that process navigation instructions in
large outdoor environments will need to operate at different
levels of abstraction. For example, a land-surveying aerial robot
receiving the instruction “go to Boston and go through the state
forest on the way” must reason about a long-range goal like
“go to Boston” while also processing a finer-grained constraint
like “go through the state forest.” Existing approaches struggle
to plan such commands because of the immense number of
locations and constraints that can be expressed in language.
We introduce a hierarchical representation of outdoor envi-
ronments and a planning approach that dynamically compacts
the robot’s state space to enable tractable planning in city
and state-scale environments. Our approach leverages natural
abstractions in real-world map data, coupled with abstrac-
tions generated from users’ instructions, to generate filtered
environment views that accelerate planning while supporting a
robot’s ability to obey complex temporal goals and constraints
at different levels of abstraction. We evaluate our approach on
seven templates of LTLf formulas and in an 80 kilometer-radius
environment containing over 250,000 locations downloaded
from OpenStreetMap. The results show our approach enables
planning in seconds or minutes in a large outdoor environment
while still satisfying the task specification.

I. INTRODUCTION

Robots are increasingly deployed to outdoor domains
for autonomous missions: fixed-wing drones are delivering
critical medical goods [1], quadcopters are surveying in-
frastructure and land [2], and autonomous trucks are being
tested on public roads [3]. These robots will have to be
tasked by humans—for example, a pilot providing high-level
navigation tasks to a drone delivery fleet, or an autonomous
truck operator instructing the vehicle to detour towards better
weather. As interactions with outdoor robots become more
common, we require an interface that allows a human to
naturally give commands to a robot, while exploiting all the
knowledge that can be extracted from such commands.

Natural language offers an intuitive and expressive inter-
face for human-robot interaction. There is a body of work
on resolving natural language commands to plans for a
robot [4]. Motivated by the complex temporal goals and
constraints often expressed in natural language, recent work
has focused on non-Markovian commands [5, 6, 7, 8]. These
approaches leverage a sequential decision-making framework
that supports non-Markovian tasks but is computationally
expensive due to the necessary processing of extended state
histories. For example, a robot receiving the command “go
to Boston and go through the state forest on the way”

∗Brown University, Providence, RI, 02912, USA. Emails:
matthew berg@alumni.brown.edu, {gdk, stefie10}@cs.brown.edu.
‡ Work done prior to joining Amazon.

Fig. 1. A simulated Skydio R1 flying over Massachusetts, USA after
being tasked to “go to Boston and go through the state forest on the way.”
The quadcopter is operating in an 80-kilometer radius environment based
on map data from OpenStreetMap. Our approach generates the environment
representation and computes the path plan; existing language modules [6, 7]
ground the natural language command to a structured form for planning.

must retain and evaluate its state history—a violation of
the Markov property—to ensure a visit to a “state forest”
then “Boston.” As the robot’s environment grows large,
it becomes increasingly difficult to plan to satisfy these
extended state sequences.

We present a hierarchical representation of outdoor envi-
ronments and a planning approach that leverages map and
language-based abstractions to enable tractable planning of
non-Markovian tasks in city and state-scale environments.
The hierarchical map representation is constructed using
data from OpenStreetMap [9]. Locations are organized into
categories such as landmarks and cities and their
geometries are separately stored for planning. We assume
the hierarchical representation is combined with a structured
encoding of a natural language command, computed with
an existing model such as Berg et al. [7]. The planner
uses work from Oh et al. [6] to decompose this encoding
into subtasks that are solved with a sequential decision-
making model. As the planner progresses through subtasks,
it evaluates semantic similarities between a user’s location
referring expressions and real-world locations to further
reduce environment size.

We evaluate our approach in 30 and 80-kilometer radius
environments located in the Northeast United States. The
tests use 7 templates of LTLf formulas that specify straight-
line start-to-goal distances of up to 80 kilometers. We
additionally test the example task to demonstrate language-
to-plan functionality with existing language modules [6, 7]
and a simulated aerial robot (Figure 1). Our approach can
compute plans on the order of seconds to minutes from an
environment containing over 250,000 locations. The results
show that the map and language-based abstractions en-
able tractable planning in large outdoor environments while
generating similar or shorter-length paths compared to an
existing baseline that takes up to hours to run.

II. RELATED WORK

Route directions can be ambiguous and refer to an im-
mense number of paths in the environment. Lovelace et al.
[10] discuss a three-step model of generating route direc-
tions: spatial knowledge, choice of route, and translating
the route into verbal instructions. A robot must reverse
these steps in a way that satisfies the user’s intent and is
computationally tractable. There has been work on modeling
large-scale spaces [11] and following instructions in spaces
containing a variety of environment features [12, 13, 14].
Matuszek et al. [12] parse natural language route instructions
into a formal path description language more easily inter-
preted by the robot’s planner. To ensure tractable planning,
they constrain the state space of potential paths using actions
available to the robot. Kollar et al. [13] introduce the spatial
description clause, a different formalism that allows a robot
to probabilistically reason about spatial relationships in route
directions. Their approach assumes route directions are given
sequentially. However, directions can be non-Markovian.

A Markov Decision Processes (MDP) is a sequential
decision-making framework previously used to solve non-
Markovian natural language commands [5, 6, 7, 8]. MDPs
are a convenient choice for the fully-observed planning
problem because they are compatible with an intermedi-
ate, structured representation of a user’s language. Planning
in partially-observed environments is an active thread of
research [15, 16, 17, 18], however, our work focuses on
fully observable environments generated from geographic
data. MDPs generally struggle to operate tractably in large
state spaces. Oh et al. [6] introduce the Abstract-Product
Markov Decision Process, a framework that uses abstrac-
tion to accelerate planning performance on non-Markovian
tasks. AP-MDPs decompose a high-level task into multiple
subproblems, each solved by recursively lower-level MDPs.
Our approach uses an AP-MDP that is modified to support
an environment containing thousands of real-world locations.
We use deterministic path planning where possible, and
filter the state space for MDP-based planning using semantic
information in the map. Other work combines learning and
planning to find hierarchical MDP representations [19], but
is not suitable for tasks where the agent cannot repeatedly
execute the task in order to learn.

There is a body of work on grounding natural language to
structured representations [5, 6, 7, 8, 20, 21, 22, 23, 24]. One
representation is Linear Temporal Logic, a first-order logic
capable of expressing non-Markovian goals and constraints.
LTL formulas can be translated into an equivalent automaton
[25] that an MDP uses to satisfy a task’s temporal objectives.
Gopalan et al. [5] present a sequence-to-sequence model [26]
for grounding natural language to a variant of LTL [27].
Berg et al. [7] introduce a model to ground commands with
unrestricted location referring expressions; this work enables
a robot to process commands in unseen environments but
does not support a spatial hierarchy. Our work adapts their
landmark resolution model to support a map representation
and tasks defined at multiple levels of abstraction.

Fig. 2. 80km map. The center is in Brown University, Providence, RI,
USA. The landmark (top left, partial view), neighborhood (top right,
partial view), city (bottom left) levels and hierarchical map are shown.

III. PLANNING FOR NON-MARKOVIAN INSTRUCTIONS IN
LARGE OUTDOOR ENVIRONMENTS

Consider the non-Markovian task “go to Boston and go
through the state forest on the way.” The user is referring
to locations that are potentially far apart and difficult to
localize to without a map. Further, the reference to Boston
is implicitly referring to hundreds or thousands of sub-
locations, while the reference to a state forest is referencing a
single location. As the environment grows large, the number
of possible locations and sub-locations can become computa-
tionally intractable. A robot needs a structured representation
of the environment that ideally leverages spatial abstractions
to make the planning problem tractable.

Our approach constructs a hierarchical map representation
using data from OpenStreetMap [9], a publicly available
map service containing rich spatial hierarchies and semantic
information. The map representation contains a variety of
locations such as shops, streets, parks, forests, and more.
This representation is combined with a structured encoding
of the task and supplied to an Abstract-Product Markov
Decision Process (AP-MDP)-based planner [6], which out-
puts a sequence of global coordinates satisfying the task’s
temporal and spatial objectives. Our approach focuses on
computing higher-level path plans, and assumes the robot
contains lower-level autonomous systems that respond to
local obstacles and changes in the environment.

A. Linear Temporal Logic on Finite Traces

LTL is a domain-independent formalism that supports
temporal conditions with an infinite time horizon and is
capable of capturing non-Markovian goals and constraints.
We consider finite-length tasks and use LTL on Finite Traces
(LTLf) [28]. This work follows the syntax:

φ ::= α | ¬φ | φ ∧ ψ | φ ∨ ψ | Fφ | Gφ | φUψ

where α ∈ A is an atomic proposition, ¬,∧,∨ are logical
negation, conjunction, and disjunction, φ and ψ are LTLf
formulas, F denotes finally, G denotes globally, and U
denotes until. See De Giacomo and Vardi [28] for semantic
interpretations of LTLf .

B. Map Generation

The hierarchical map representation (Figure 2) uses ab-
straction to create a compact yet semantically expres-
sive environment for planning from geographic data. The
map representation contains three levels: landmarks such
as forests, buildings, and streets, neighborhoods, and
cities. The map representation’s data is downloaded from
OpenStreetMap (OSM) [9]. OSM maps contain nodes, ways,
and relations. A node is a single global coordinate, a way is
a collection of nodes, and a relation is a collection of nodes,
ways, and/or relations [29]. The hierarchy is based on the
geometry and semantic data of these elements—we define
landmarks as named nodes, neighborhoods as nodes
and ways tagged as neighborhoods, and cities as relations
at OSM’s administrative level 8.

The map representation is defined as MP = (G,H, T, Z):

1) G is the graph set, centered on a single (latitude,
longitude) coordinate. gi ∈ G is the graph at abstrac-
tion level i. Level i = 0 corresponds to landmarks
(Figure 2, top left), i = 1 to neighborhoods (top
right), and i = 2 to cities (bottom left).

2) H is the hierarchical map composed of all gi ∈ G.
This graph unifies the landmark, neighborhood,
and city-level graphs (Figure 2, bottom right).

3) T is the transition map composed from ti ∈ T Ball
Trees [30]. The planner queries the transition map to
move between levels of the hierarchy.

4) Z is the filtered graph set. Each ζi ∈ Z is a sub-graph
of gi containing the filtered state space for the subtask
the planner is currently solving (Figure 5).

To maintain a compact map representation, each gi is con-
structed from the Delaunay triangulation [31] of locations’
centroids.1 Locations’ geometries are separately stored. They
are used to compute hierarchical relationships during map
generation and hierarchical transitions at plan-time. When
the planner transitions to a new level of the hierarchy,
it uses a Ball Tree ti ∈ T from the transition map to
efficiently query for nearby map features. Each Ball Tree is
constructed from the centroids of the corresponding gi using
the Haversine distance metric [32]. The map representation
contains textual semantic data from OSM, such as building
type, waterway type, and land use [33]. The filtered graph set
Z leverages this semantic data to prune centroids and edges
that are peripheral to the planner’s current subtask. These
graphs are discussed in Section III-D.

C. Planning

LTLf tasks can be planned with a Markov Decision
Process (MDP), a model for sequential decision making in
stochastic environments. We assume stochastic transitions are
rare at the map representation’s levels of abstraction and do
not model them in our approach.

1The geometric centroid is used at the landmark and neighborhood
level. At the city level, an administrative center (e.g., a town hall) is used
when available in the map data; otherwise, the geometric centroid is used.

Fig. 3. A* planning within a landmark-level projection of the city-level
plan computed for subtask (q1, q2). Blue points show landmark-level
centroids within the projection, red points show the landmark-level path,
and orange points show where a landmark-city transition is made during
planning. The path starts at Quaddick State Forest, Thompson, Connecticut
and completes at a landmark in Boston, Massachusetts.

q0

q1

q2

¬α0

¬α2 ∧ α0 α2

α2 ∧ α0

¬α2

1

Fig. 4. DFA for the command “go to Boston and go through the state
forest on the way.” The LTLf formula is F(α0∧F(α2)), where α0, α2 are
atomic propositions at the landmark and city level. The transition from
q0 to q2 is considered spatially infeasible and removed before planning.

Definition 1. Markov Decision Process (MDP): A deter-
ministic MDP is defined by the tuple M = (S,A, γ, T,R),
where S is a set of states, A is a set of actions, γ is the
discount factor, T : S × A → S is the transition function,
and R : S → R is the reward function. The robot seeks
to find a policy π : S → A that maximizes the sum of
discounted rewards. An MDP contains |A||S| policies and
there exists at least one optimal policy π∗. Our approach uses
Value Iteration [34] to find π∗. Convergence is guaranteed
because the space of policies is finite and the robot iteratively
improves its policy.

States are defined by mappings between LTLf proposi-
tions and locations’ geometry. For example, the state Boston
in F(state forest ∧ F(Boston)) is true when the robot is
within Boston’s polygon. Actions are defined by edges
between locations, for example, the robot takes action a to
travel from its current state to Boston. An MDP can be
extended with a labeling function that maps locations to
atomic propositions.

Definition 2. Abstract Labeled Markov Decision Process
(AL-MDP) [6]: An AL-MDP is defined by the tuple M i =
(Si, Ai, T i, si0, AP, L

i, Ri), where i is the level of abstrac-
tion, Si, Ai, T i, si0, and Ri are the MDP components at
abstraction level i, AP is the set of atomic propositions, and
Li : Si → 2AP is the labeling function that maps states to the
atomic propositions. Propositions can be defined at different
levels of abstraction, but a state si is only assessed against
propositions at level i or higher. A composition of AL-MDPs
{M0, ...,M i, ...,M l} (l = the highest level of abstraction)
supports fluid planning at different levels of abstraction.

A separate formalism ensures the planner obeys temporal
goals and constraints (Figure 4):

Definition 3. Deterministic Finite Automaton (DFA): Ev-
ery LTLf formula can be translated into an equivalent DFA

[28]. A DFA is defined by the tuple B = (Q,Σ, δ, q0, F),
where Q is the set of states, Σ is the alphabet, δ : Q×Σ→ Q
is the transition function, q0 is the initial state, and F is the
acceptance condition.

Taking the product of a DFA and AL-MDPs enables
the planner to satisfy temporal and spatial objectives. This
construction is inspired by an Abstract Product Markov
Decision Process (AP-MDP) [6], the sequential decision-
making framework we use in our approach. During planning,
an LTLf state transition is analogous to a DFA transition,
which we refer to as a subtask and denote (qk, qk+1). Each
subtask is solved using an AL-MDP at the lowest level of
abstraction across the stay condition (constraint on qk → qk)
and goal condition (constraint on qk → qk+1). The action-
minimizing path satisfying the DFA’s acceptance condition
is the solution. See Oh et al. [6] for complete details.

Discontiguous connections—for example, an edge be-
tween city A and city B that intersects city C—can
exist because locations’ centroids are connected independent
of their geometry. We adapt the AP-MDP reward function
to handle these connections. Our approach validates the stay
condition is satisfied along all states from the current state,
sip, to the next state, si

′

p . If the stay condition holds, a reward
is assigned based on si

′

p . Let ai be the current action, e be
the edge traversed to complete action ai, qk be the current
state in the DFA, and V be the set of states mapping to the
stay and goal constraints’ atomic propositions that intersect
with e. The reward r is assigned as:

r =



100, if i. T i(si, ai, si
′
) = si

′
and

ii. δ(qk, L(v)) = qk ∀v ∈ V − si
′

and
• δ(qk, L(si

′
)) = qk+1

−1, if (i) and (ii) and
• δ(qk, L(si

′
)) = qk

−100, otherwise.

In our approach, AL-MDPs exclusively operate at the
highest-possible level of abstraction, forgoing planning with
recursively lower-level MDPs in favor of fast A* path
planning. MDP-computed plans are therefore not guaranteed
to resolve to the base landmark level of abstraction, for
example, the AL-MDP for subtask (q1, q2) plans a sequence
of cities to Boston. A landmark-level path is computed
by planning within a lower-level projection of the higher-
level states (Figure 3). This projection is constructed using
two R-Trees [35, 36]—one storing edges, the other storing
locations’ geometries—that efficiently identify landmark-
level edges within higher-level locations. The edges and
their vertices form a landmark-level subgraph where A*
commences.

D. Semantic Filtering

Goals and constraints are often planned at the base level
of abstraction, for example, the planner operates at the
landmark level to ensure its path reaches a state forest.
However, planning with a landmark-level MDP is com-
putationally intractable as the environment grows large. We

Fig. 5. Filtered graph for subtask (q0, q1). The blue points show the
landmark-level paths and the yellow points show salient map locations
satisfying the goal condition (state forests).

approach this problem by filtering the map representation
to paths that reach semantically significant locations. We
assume a language module resolves all atomic propositions
to salient locations; by extension, subtasks’ stay and goal
conditions resolve to salient locations. We use these locations
to create subtask-unique state spaces for planning.

Our novel semantic filter generates a set of paths Ωqk,qk+1

based on the stay and goal conditions’ salient map locations
Υqk,qk+1

. These paths are generated at the lowest level
of abstraction specified by the stay/goal conditions. For
example, Ωq0.q1 contains landmark-level paths to state
forests and Boston, while Ωq1.q2 contains a city-level path
to Boston. The filter will additionally generate paths that
avoid other salient locations when the stay/goal conditions
contain multiple atomic propositions. All vertices and edges
in the path set are used to create the filtered graph ζiqk,qk+1

at
level i in the map representation (see Figure 5). The filtered
graph is then supplied to the MDP planner, which finds
the action-minimizing path satisfying the LTLf formula. We
outline the semantic filtering procedure in Algorithm 1.

Algorithm 1: Semantic Filtering

Input: gi, environment graph at level i
H , merged map (for hierarchy transitions)
T , transition map (for hierarchy transitions)
v0, start location in gi

APqk,qk+1
, atomic propositions in the goal

and stay conditions of subtask (qk, qk+1)
Output: ζiqk,qk+1

, the filtered graph for (qk, qk+1)

1 Initialize Ωqk,qk+1

2 Υ← retrieve map features(APqk,qk+1
)

3 for α in APqk,qk+1
do

4 for υ in Υα do
5 ωto ← astar(v0, υ, gi, H , T)
6 add(Ωqk,qk+1

, ωto)
7 if |Υ \Υα| > 0 then
8 avoids ← Υ \Υα

9 ωavoid ← astar(v0, υ, gi, H , T , avoids)
10 add(Ωqk,qk+1

, ωavoid)
11 end
12 end
13 end
14 ζiqk,qk+1

← subgraph(gi, Ωqk,qk+1
)

15 return ζiqk,qk+1

IV. RESULTS

We test planning performance, efficiency, and spatial
efficiency on LTLf formulas specifying long-range tasks.
We also benchmark performance on the example task with
different location reference resolution thresholds and show a
simulated aerial robot following the plan computed by our
approach.

A. Environment

We use two environments centered on Providence, RI,
USA. Each environment was generated by querying Open-
StreetMap for geographic data within a 30 or 80 kilometer
radius of the center point. The landmark and city-level
queries returned locations with centroids past the query
radius; we kept these locations. There are 44,822 locations
composed from 44,615 landmarks, 151 neighborhoods, and
56 cities in the 30-kilometer environment and 251,184 states
composed from 250,502 landmarks, 408 neighborhoods, and
274 cities in the 80-kilometer environment.

B. Long Range Planning

We created a dataset of 112 LTLf formulas to test in the
80-kilometer environment.2 They are equally distributed over
7 templates that are defined with 1 to 4 atomic propositions.
Each proposition refers to a unique location; the a proposi-
tion is varied and used to represent the goal state while the b,
c, and d are constant and represent constraints. Increasing the
number of propositions and LTLf operators can increase the
number of states and transition complexity in the correspond-
ing DFA. We analyze planning performance relative to this
‘temporal complexity.’ To test flat and hierarchical planners
on the same tasks, all propositions are defined at the city
(highest) level. The flat planners plan city-level tasks at the
landmark level by using hierarchical relationships (e.g.,
landmark X is in city Y). We test with 42 formulas that
can be satisfied in the 30 kilometer environment, and all 112
formulas in the 80 kilometer environment.

Results are shown in Figure 6. We test 3 planning
configurations: no abstract planning and semantic filtering
(NA/S), abstract planning and semantic filtering (A/S), and
abstract planning without semantic filtering (A/NS). For each
configuration, we evaluate computing time (performance)
and Bellman backups (planning efficiency) as a function
of the LTLf template. Computing time includes reference
to location resolution,3 Value Iteration, semantic filtering
(NA/S and A/S), and base-level path resolution (A/S and
A/NS). We additionally compare planned path lengths to
evaluate spatial efficiency. In the 30-kilometer environment,
we compare to a baseline that does not use abstraction
nor semantic filtering (NA/NS) and is essentially a flat
MDP processing the entire landmark-level state space. An
unfiltered state space lets the planner consider more paths but
causes orders of magnitude slower planning time. NA/NS is

2https://github.com/matthewberg/LongRangeLTLTasks
3This procedure is handled by the language module and is effectively

a search over the hierarchical map. Its performance depends on the map
construction and we therefore include it in the results.

not benchmarked in the 80 kilometer environment because
the number of locations makes it computationally intractable.

The abstract planning configurations sustain the highest
performance as temporal complexity increases. The small
performance difference between A/S and A/NS suggests
semantic filtering provides low performance gains in smaller
state spaces like the city level. However, semantic fil-
tering achieves larger performance gains with landmark-
level planning. NA/S tractably plans at the landmark
level across all tested templates, while in the 30-kilometer
environment, the baseline (NA/NS) cannot compute a plan
for any template in tractable time. NA/NS exhibits larger
performance and efficiency variations due to variability in the
landmark level’s size. Some paths go through urban areas
with many locations, while others go rural areas with less
locations. Variation can also be attributed to implementation-
level modifiers like the complexity of polygon checks along
a path. There are also differences between plans in the 30 and
80-kilometer environments because the environments contain
slightly different map data. Last, we note temporally correct
paths were computed for all tested formulas. These results
show the combination of the hierarchical map representation
and semantic filtering is able to efficiently and effectively
find plans in both smaller and large environments.

Our approach aims to compute spatially efficient paths
by leveraging A* when possible. Using a spatial heuristic
helps to avoid planning paths that take fewer actions but
cover longer distances. We compare planned path lengths
on temporally simple tasks (F(a)) in the 30-kilometer envi-
ronment and observe cases where planning without a spatial
heuristic (NA/NS and A/NS) plan longer paths (Figure 6,
upper right), such as paths that traverse long edges at the
map representation’s boundary. We additionally compare the
number of times each configuration plans the shortest path
in the 80-kilometer environment (Figure 6, lower right) and
observe NA/S tends to compute the shortest paths. A/S
computes shorter paths for ‘go to’ tasks—F(a), ¬bU a,
F(a) ∧ G(¬b)—while A/NS tends to compute shorter paths
for ‘go through’ tasks—–F(b ∧ F(a)) and variants. A/S
struggles with ‘go through’ tasks because semantic filtering
computes paths to state boundaries without knowing the most
efficient boundary for the global plan. When filtering at the
landmark level, states are small and boundary selection is
not a significant issue, but at the city level, the size of
map locations can create a more difficult planning problem.
We expect there is some loss in spatial efficiency because
semantic filtering is aggressively greedy: Taking the shortest
landmark-level path between city A to city B can force
the planner to take a far longer path to city C. An important
future direction is quantifying the loss of optimally alongside
a survey of different filtering heuristics.

C. Planning with a language command

We test our approach with the command “go to Boston
and go through the state forest on the way” using the
language-to-LTL model from Oh et al. [6] and the landmark
resolution approach that we adapt from previous work [7].

Fig. 6. Long Range Planning Results. The 30-kilometer environment benchmarks for performance and planning efficiency (top row, left and center) show
the proportion of time and backups compared to baseline. The 80-kilometer environment benchmarks (bottom row, left and center) only compare planning
configurations from our approach. Spatial efficiency benchmarks (right) show planned path lengths for F(a) tasks in the 30-kilometer environment and
the number of shortest-length paths for tasks over all LTLf templates in the 80-kilometer environment.

Fig. 7. Planning results for the example task “go to Boston and go
through the state forest on the way”. The horizontal axis shows the location
resolution threshold for proposition b, the vertical axis shows planning time.

The language module’s input is the example command and its
output is an LTLf formula with labeled atomic propositions.
Our approach handles ambiguous utterances like the “state
forest” by planning paths to all potential goal locations (state
forests). Therefore, the number of potential locations must
be capped to ensure tractable performance. Results collected
in the 80-kilometer environment (Figure 7) demonstrate the
relationship between this threshold and planning time: As
the threshold increases, the filtered landmark-level envi-
ronment grows and planning time increases. The marginal
performance difference between A/S and A/NS suggests
landmark-level planning to the state forest takes up the
bulk of planning time. Balancing the threshold and planning
performance is a design decision that could vary across
applications and environments, for example, a land surveyor
may increase the threshold for nature and water body-related
propositions while a delivery operator may set the threshold
to 1 and refer to locations with unique names.

D. Simulated Robot Demonstration

We tested our approach with an aerial robot simulator from
previous work [7] (Figure 1). The simulator is built with

Unity game engine [37], MapBox [38], and ROS and ROS#
[39, 40]. The simulated robot communicates with an offboard
ROS master that publishes the latitude/longitude path plan.
We use an accepting radius of approximately 1 meter. GPS
precision could limit the natural language commands a real
quadcopter understands, for example, references to nearby
landmarks may require additional localization modules
(e.g. vision). There is also the possibility of operating in
GPS-denied environments. The robot could use a transfor-
mation between its’ local and global frames, but this is
susceptible to drift over long distances. Aerial robots capable
of following long-range plans are likely subject to airspace
rules that the planner would need to support. Simulation
allows us to test end-to-end functionality of our approach;
real-world deployment is a significant thread of future work.

V. CONCLUSION

We present a hierarchical map representation and planning
approach that enables tractable planning of non-Markovian
tasks in large outdoor environments. Our approach leverages
abstractions from geographic data and a user’s language to
compact the state space and accelerate planning time. We
test our approach on 7 templates of LTLf formulas in 30
and 80-kilometer-radius environments containing thousands
of locations. The results show our approach plans in tractable
time while obeying complex temporal goals and constraints.
Further, the paths are similar or shorter-length compared to
paths planned with a baseline approach. Future work includes
integrating airspace rules in the planner and exploring more
advanced environment filtering heuristics.

VI. ACKNOWLEDGEMENTS

This work was supported by ONR under grant award
N00014-17-1-2699 and an award from Echo Labs.

REFERENCES

[1] E. Ackerman and M. Koziol, “In the air with
zipline’s medical delivery drones,” Available
at https://spectrum.ieee.org/robotics/drones/
in-the-air-with-ziplines-medical-delivery-drones,
2019.

[2] Skydio, “Company overview,” Skydio, Inc., Tech. Rep.,
2020. [Online]. Available: https://drive.google.com/file/
d/13V4XcHudwhI61zyfz5L7eJ BNvg0-GOV/view

[3] J. Hirsch, “Waymo tests autonomous trucks in
texas,” Available at https://www.ttnews.com/articles/
waymo-tests-autonomous-trucks-texas, 2020.

[4] S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Ma-
tuszek, “Robots that use language,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 3, pp.
25–55, 2020.

[5] N. Gopalan, D. Arumugam, L. L. Wong, and S. Tellex,
“Sequence-to-sequence language grounding of non-
markovian task specifications.” in Robotics: Science
and Systems, 2018.

[6] Y. Oh, R. Patel, T. Nguyen, B. Huang, E. Pavlick, and
S. Tellex, “Planning with state abstractions for non-
markovian task specifications,” in Robotics: Science
and Systems, 2019.

[7] M. Berg, D. Bayazit, R. Mathew, A. Rotter-Aboyoun,
E. Pavlick, and S. Tellex, “Grounding language to
landmarks in arbitrary outdoor environments,” in IEEE
International Conference on Robotics and Automation
(ICRA), 2020, pp. 208–215.

[8] R. Patel, E. Pavlick, and S. Tellex, “Grounding lan-
guage to non-markovian tasks with no supervision of
task specifications,” in Robotics: Science and Systems,
2020.

[9] OpenStreetMap contributors, “Planet dump
retrieved from https://planet.osm.org ,” https:
//www.openstreetmap.org, 2017.

[10] K. L. Lovelace, M. Hegarty, and D. R. Montello,
“Elements of good route directions in familiar and
unfamiliar environments,” in International conference
on spatial information theory. Springer, 1999, pp. 65–
82.

[11] B. Kuipers, “The spatial semantic hierarchy,” Artificial
Intelligence, vol. 119, no. 1-2, pp. 191–233, 2000.

[12] C. Matuszek, D. Fox, and K. Koscher, “Following
directions using statistical machine translation,” in 5th
ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE, 2010, pp. 251–258.

[13] T. Kollar, S. Tellex, D. Roy, and N. Roy, “To-
ward understanding natural language directions,” in 5th
ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE, 2010, pp. 259–266.

[14] S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Baner-
jee, S. Teller, and N. Roy, “Understanding natural
language commands for robotic navigation and mobile
manipulation,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 25, no. 1, 2011.

[15] A. Wandzel, Y. Oh, M. Fishman, N. Kumar, L. L.
Wong, and S. Tellex, “Multi-object search using object-
oriented pomdps,” in International Conference on
Robotics and Automation (ICRA), 2019, pp. 7194–
7200.

[16] M. Ahmadi, R. Sharan, and J. W. Burdick, “Stochastic
finite state control of pomdps with LTL specifications,”
arXiv preprint arXiv:2001.07679, 2020.

[17] K. Zheng, D. Bayazit, R. Mathew, E. Pavlick, and
S. Tellex, “Spatial language understanding for object
search in partially observed city-scale environments,” in
30th IEEE International Conference on Robot Human
Interactive Communication (RO-MAN), 2021, pp. 315–
322.

[18] C. Bradley, A. Pacheck, G. J. Stein, S. Castro, H. Kress-
Gazit, and N. Roy, “Learning and planning for tem-
porally extended tasks in unknown environments,” in
IEEE International Conference on Robotics and Au-
tomation (ICRA), 2021, pp. 4830–4836.

[19] A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia,
M. Fiser, and J. Davidson, “Prm-rl: Long-range robotic
navigation tasks by combining reinforcement learning
and sampling-based planning,” in 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 5113–5120.

[20] R. Paul, J. Arkin, N. Roy, and T. M Howard, “Efficient
grounding of abstract spatial concepts for natural lan-
guage interaction with robot manipulators,” in Robotics:
Science and Systems, 2016.

[21] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox,
“Learning to parse natural language commands to
a robot control system,” in Experimental robotics.
Springer, 2013, pp. 403–415.

[22] A. Boteanu, J. Arkin, S. Patki, T. Howard, and
H. Kress-Gazit, “Robot-initiated specification repair
through grounded language interaction,” in AAAI Fall
Symposium on Natural Communication for Human-
Robot Collaboration, 2017.

[23] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas,
“Translating structured english to robot controllers,”
Advanced Robotics, vol. 22, no. 12, pp. 1343–1359,
2008.

[24] C. Wang, C. Ross, Y.-L. Kuo, B. Katz, and A. Barbu,
“Learning a natural-language to LTL executable seman-
tic parser for grounded robotics,” in 4th Conference on
Robot Learning (CoRL), 2020.

[25] M. Y. Vardi and P. Wolper, “Reasoning about infinite
computations,” Information and Computation, vol. 115,
no. 1, pp. 1–37, 1994.

[26] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to
sequence learning with neural networks,” in Proceed-
ings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, 2014, p.
3104–3112.

[27] M. L. Littman, U. Topcu, J. Fu, C. L. Isbell, M. Wen,
and J. MacGlashan, “Environment-independent task
specifications via GLTL,” ArXiv, vol. abs/1704.04341,

2017.
[28] G. De Giacomo and M. Y. Vardi, “Linear temporal

logic and linear dynamic logic on finite traces,” in
IJCAI’13 Proceedings of the Twenty-Third international
joint conference on Artificial Intelligence. Association
for Computing Machinery, 2013, pp. 854–860.

[29] OpenStreetMap contributors, “Elements,” https://wiki.
openstreetmap.org/wiki/Elements, November 2020.

[30] S. M. Omohundro, Five Balltree Construction Al-
gorithms. International Computer Science Institute
Berkeley, 1989.

[31] B. N. Delaunay, “Sur la sphère vide,” Bull. Acad. Sci.
URSS, vol. 1934, no. 6, pp. 793–800, 1934.

[32] J. Inman, Navigation and Nautical Astronomy for the
Use of British Seamen. C. and J.Rivington, 1835.

[33] OpenStreetMap contributors, “Map features,” https:
//wiki.openstreetmap.org/wiki/Map features, February
2021.

[34] R. Bellman, Dynamic Programming, 1st ed. Princeton,
NJ, USA: Princeton University Press, 1957.

[35] A. Guttman, “R-trees: A dynamic index structure for
spatial searching,” in Proceedings of the 1984 ACM
SIGMOD International Conference on Management of
Data. New York, NY, USA: Association for Comput-
ing Machinery, 1984, p. 47–57.

[36] Howard Butler, Brent Pedersen, Sean Gilles, and
others, “Rtree: Spatial indexing for python.” [Online].
Available: https://toblerity.org/rtree/

[37] Unity Technologies, “Unity.” [Online]. Available:
https://unity.com/

[38] Mapbox, “Mapbox unity SDK.” [Online]. Available:
https://github.com/mapbox/mapbox-unity-sdk

[39] M. Quigley, J. Faust, T. Foote, and J. Leibs, “ROS:
An open-source robot operating system,” in IEEE In-
ternational Conference on Robotics and Automation
Workshop on Open Source Software, 2009.

[40] Siemens, “ROS#,” 2017, https://github.com/siemens/
ros-sharp, [Accessed: 2018].

