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Abstract— Robots operating in outdoor, urban environments
need the ability to follow complex natural language com-
mands which refer to never-before-seen landmarks. Existing
approaches to this problem are limited because they require
training a language model for the landmarks of a particular
environment before a robot can understand commands refer-
ring to those landmarks. To generalize to new environments
outside of the training set, we present a framework that parses
references to landmarks, then assesses semantic similarities
between the referring expression and landmarks in a predefined
semantic map of the world, and ultimately translates natural
language commands to motion plans for a drone. This frame-
work allows the robot to ground natural language phrases to
landmarks in a map when both the referring expressions to
landmarks and the landmarks themselves have not been seen
during training. We test our framework with a 14-person user
evaluation demonstrating an end-to-end accuracy of 76.19% in
an unseen environment. Subjective measures show that users
find our system to have high performance and low workload.
These results demonstrate our approach enables untrained
users to control a robot in large unseen outdoor environments
with unconstrained natural language.

I. INTRODUCTION
As autonomous systems improve on outdoor robots, such

as self-driving vehicles and drones, it becomes increas-
ingly necessary to develop models that translate high-level,
often ambiguous instructions to low-level inputs for the
autonomous system. For example, a passenger might instruct
a self-driving vehicle to “Avoid the red bridge on the way to
the office” or to “Go through the red bridge before heading
to CVS.” Such natural language commands present multiple
structural and semantic layers that the robot’s autonomous
system cannot understand.

Existing approaches to this translation problem assume a
language model trained over a map of the exact environment
in which the robot will be deployed [1, 2, 3, 4]. This lack
of generality prevents the robot from navigating to areas on
the map where the language model has not been trained.
In addition, current approaches require grounding all of the
natural language to a predefined, fixed set of possible pred-
icates, which is overly strict and limits generalization. Such
approaches also focus towards training a language model on
a limited vocabulary that is specific to a given map, forgoing
the highly developed semantic depth of publicly available
global mapping data. This limitation curbs the user’s ability
to refer to landmarks by using semantic descriptors, like “red
bridge” or “ice cream store.”

∗ These authors contributed equally to this work.
1 Brown University, Providence, RI, 02912, USA. Emails:
{matthew berg, deniz bayazit, rebecca mathew, ariel rotter-aboyoun,
ellie pavlick}@brown.edu, stefie10@cs.brown.edu

Fig. 1: Simulated Skydio R1 in Tulsa, Oklahoma. This map
was not shown during training and the model succeeds at
performing 76.19% of the tested natural language commands
in this environment.

In this paper, we present a system that allows a person to
command a drone with natural language in an environment
never-before-seen to the drone. The system is capable of
interpreting natural language commands, including refer-
ences to nearby landmarks, with no training data for the
environment. Our system is constructed from a language
model and planning model. In the language model, natural
language is parsed into a structured logical form necessary
for planning. We use Linear Temporal Logic (LTL), which
represents atomic propositions over a linear timeline. We
exclusively use the LTL atoms for our logical form, allowing
the natural language to stay in its unstructured state, such
as “Go to the big blue bear but avoid the main green”
grounding to F(big blue bear ∧ ¬main green). Keeping
natural language in the logical form allows us to lever-
age more flexible neural models better suited to resolving
ambiguous language while simultaneously maintaining a
structured command representation in the planner. Critically,
this retention of natural language reduces the predefined
predicates our system requires to logical operators (e.g. AND,
NOT). As a result, our model can seamlessly handle unseen
referring expressions to landmarks, allowing it to generalize
to entirely novel environments and commands.

In the planning model, the grounded LTL formulae are
supplied to a planner that has access to a predefined se-
mantic map of the robot’s environment, generated from
OpenStreetMap (OSM) [5]. The landmarks names from the
LTL formulae are resolved to navigational coordinates. These
coordinates become part of a motion plan that is uploaded
to a simulated Skydio R1 drone.

We perform both a user evaluation and corpus-based
evaluation of this model. Our in-person user evaluation



demonstrates an accuracy of 76.19% in an environment
not shown during training and a mean NASA-Task Load
Index (NASA-TLX) performance score of 14.85 points out
of 20 points. For the corpus-based approach, we present
1540 challenging natural language commands collected on
Amazon Mechanical Turk (AMT) which describe trajectories
containing one or two landmarks from 22 unique maps1.
Using this data, we show an accuracy of 45.91%.

II. RELATED WORK

Natural language presents an intuitive means of communi-
cation with robots, particularly those with autonomy systems
that rely on higher-level human guidance. There has been
extensive work on developing models which translate natural
language to lower-level input for these autonomy systems.
Previous work has focused on grounding the complete natu-
ral language command into a symbolic form for the motion
planner [6, 7, 8, 9]. To handle complex instructions, Tellex
et al. [1] created a probabilistic graphical framework for
grounding natural language commands to landmarks and
other entities in a map. In addition, neural sequence-to-
sequence (Seq2Seq) models that ground natural language to
symbolic forms have been proposed [4, 10, 11]. However,
these approaches make the dual assumption that there exists a
small number of landmarks in the map and that the language
model can be trained on these landmarks directly. In contrast,
our approach uses a map with millions of landmarks and does
not assume that a language model can be trained on all of
them.

Importantly, natural language can refer to entities not
only via explicit names, but also via general descriptions.
For example, one might say “Go to the medicine store”
instead of “Go to CVS.” There exists a body of work
on grounding semantic information in natural language to
logical forms [2, 12, 13, 14, 15]. To create more domain-
independent groundings, Cheng et al. [12] demonstrates
a neural semantic parser that uses an intermediate form
containing natural language. Misra et al. [13] presents a
framework for grounding novel verbs to logical forms by
leveraging available information in the environment. Similar
to these works, we use natural language in a logical form and
leverage information in the map to ground unknown words.
However, our approach includes natural language in the fully
grounded logical form, and leverages semantic utterances
with information in the map to ground novel landmarks. This
combination allows us to interpret references to landmarks
that the robot’s model has never seen during training while
also grounding complex commands with constraints and
subgoals.

A variety of approaches exist for combining natural
language with robot instruction following in a map with
landmarks [16, 17, 18, 19]. Dzifcak et al. [18] presents a
framework for grounding natural language commands into
a logical form representing goals and actions, while Kollar

1https://github.com/h2r/Language-to-Landmarks-
Data

et al. [17] directly parses the natural language command into
a logical form of figure (subject of sentence), verb, landmark,
and spatial relation. Our work is positioned between the two,
coupling a goal-based logical form with landmarks directly
parsed from the natural language command.

III. APPROACH

Our system allows a person to command a drone with
natural language in a never-before-seen environment. The
system can interpret natural language commands, including
references to nearby landmarks, with no training data for
the environment. A graphical representation of our system is
shown in Figure 2.

The language model grounds natural language commands
to LTL formulae. The LTL structure is created by CopyNet
[20], a Seq2Seq model capable of copying out of vocabulary
(OOV) words. To ground natural language landmark refer-
ring expressions to landmarks in a map unseen to the lan-
guage model, we use a resolution model that draws semantic
information from a mapping database. The final output of the
language model is an LTL formula with natural language in
the logical form, e.g. F(CVS ∧ F(red bridge)).

The LTL formula is then passed to the planning model.
The planning model uses a map generated from OSM,
partitioned into Voronoi cells [21]. The partitioned map along
with the LTL formula are supplied to the AP-MDP planner
[4]. This planner extracts goals and constraints from the LTL
formula to create a motion plan as a series of latitude and
longitude points.

A. Linear Temporal Logic

As our language model is not constrained to any map
region or landmarks, it is necessary to encode goals and
constraints of the natural language command in a domain-
independent way. To accomplish this, we turn to LTL, a
domain-independent formalism whose syntax can encode
goals and constraints of the robot’s path. By allowing for
encoding of both the present and future states of the robot,
LTL supports the inherent non-Markovian nature of uncon-
strained natural language commands, such as “Move to the
medicine store without going over the red bridge.” We use
LTL to determine if a discrete trajectory satisfies the goals
and constraints of the natural language command. LTL has
the following grammatical syntax:

φ := p | ¬φ | φ ∧ ψ | φ ∨ ψ | Gφ | Fφ | φUψ| Nφ

where p ∈ P is an atomic proposition, φ and ψ are LTL
formulae, ¬, ∧, and ∨ denote logical “not,” “and,” and
“or,” G denotes “globally,” F denotes “finally,” U denotes
“until,” and N denotes “next.” Semantic interpretations of
these operations are included in Manna and Pnueli [22]. For
example, a command such as “Go to the big blue bear but
avoid the main green” would have an LTL expression of
F(big blue bear ∧ ¬main green).

https://github.com/h2r/Language-to-Landmarks-Data
https://github.com/h2r/Language-to-Landmarks-Data


NL command input:
“Go to the medicine store.”

CopyNet output:
F ( lm( medicine store )lm )

Landmark resolution output:
1. F ( cvs )

2. F ( medical research lab )
...

LANGUAGE MODEL

Lookup table in OSM:
cvs := (lat, lon)

Voronoi map generationAP-MDP planner output:
[ (lat, lon) ; ... ]

PLANNING MODEL

Fig. 2: End-to-End System Pipeline. Natural language is given to the language model, which returns a grounded LTL
formula. The planning model then creates a motion plan which satisfies the LTL formula.

B. CopyNet

To translate natural language commands into logical
forms, current approaches use a Seq2Seq model [4, 10, 11].
Seq2Seq models learn how to translate input sequences into
output sequences. However, existing Seq2Seq models learn
a mapping from a fixed input language to a fixed output
language, and require all symbols in the output language
to have appeared at training time. In contrast, our language
model generalizes to any region, and thus needs the ability
to understand words and commands the language model
has not been trained on. In particular, it is essential that
we extract unseen landmark referring expressions from the
natural language command. For example, given the command
“Go to the medicine store” our model needs to correctly
identify that “medicine store” is the referring expression and
the corresponding LTL formula would be F(medicine store).

We approach this challenge with CopyNet [20], which
is developed for cases when the output contains many
subsequences from the input. CopyNet introduces a copy-
attention mechanism atop the traditional Seq2Seq framework
[23]. This copy mechanism is fundamental to our language
model, allowing for a more domain-general model even with
a small training set.

When comparing CopyNet to a purely generative recurrent
neural network with the LCSTS dataset [24], Gu et al.
demonstrates that CopyNet improves production of readable
output for out-of-vocabulary (OOV) words. We selected
CopyNet because it was accessible in multiple open-source
implementations. We use Adam Klezcweski’s implementa-
tion of CopyNet2 with the addition of pre-trained GloVe
embedding vectors [25]. We use mjc92’s dataset3 to validate
Klezcweski’s model.

To train our model, we use a corpus of 668 natural
language navigation instructions collected by Oh et al. [4]
Each command has a corresponding LTL formula, making
this dataset well-suited for training a Seq2Seq model like
CopyNet. We augment the data by replacing goal locations
with Brown campus landmark names scraped from OSM. We

2https://github.com/adamklec/copynet
3https://github.com/mjc92/CopyNet

then divide these landmarks into unique datasets containing
landmarks from north campus and south campus. In addition,
we wrap references to landmarks with lm( and )lm as
shown in step two of Fig. 2, simplifying extraction of
landmark referring expressions for the landmark resolution
model. Finally, we limit the dataset to the following three
LTL structures:

F(φ) | F(φ ∧ F(ψ)) | F(φ ∧ ¬ψ)

C. Landmark Resolution Model

1) Mapping Database: A key focus of our framework is
the language model that grounds language to landmarks, as
humans find landmarks important for navigation instructions,
particularly for unfamiliar environments [26]. Landmarks
are geographic objects important to human spatial cognition
[27]. Following previous work [28, 29] we use OSM as our
landmark database.

OSM is a global open-source map where any user can add
landmarks and information about the landmarks. Critically,
this information can be semantic in nature, such as the type
of cuisine for a restaurant or the function of a building.
We leverage OSM’s extensive semantic database as the
foundation of our language model, enabling groundings of
semantic referring expressions to landmarks.

Two building blocks of the OSM database are NODES
and WAYS. NODES are points with a latitude, longitude,
and unique numerical ID. NODES commonly represent land-
marks such as statues, benches, and trees. WAYS are lists
of NODES, commonly representing larger landmarks like
buildings, roads, and greens. Closed WAYS have a polygon
geometry. Both NODES and WAYS can be tagged with key-
value pairs about their appearances, functions, or other
semantic information.

2) Landmark Resolution Model: Given all the possible
landmark candidates in the map, the model needs to resolve
the user’s referring expression to the correct landmark. The
landmark resolution model finds the maximally probable
candidate by calculating the similarities between the referring
expression and each landmark’s semantic information.

https://github.com/adamklec/copynet
https://github.com/mjc92/CopyNet


The landmark resolution model receives the CopyNet out-
put of an LTL formula with the user’s referring expression.
While any arbitrary model could resolve this expression
given textual descriptions, images, or robot sensor data, we
present a model that uses word embeddings to resolve the
user’s referring expression to the landmark name.

The model uses the database’s semantic information about
each landmark to find the intended landmark. However, the
user’s referring expression may not lexically align with the
landmark database. For example, we would expect “store”
and “shop” to have similar meaning, even if OSM’s data
model only supports key:shop. To resolve these lexical
conflicts, we use word embeddings, which represent words
or phrases as vectors in a high-dimensional vector space
[25, 30, 31, 32, 33]. High-dimensionality allows us to use
cosine similarity (the cosine of the angle between vectors)
to compare semantic referring expressions.

A referring expression may fall into one or more of three
possible categories: name, address, and general description.
An example of a command using more than one category
would be “Fly to CVS pharmacy,” which includes name and
description.
name: Our model exclusively uses the OSM key name.
address: Our model exclusively uses addr:house

number and addr:street.
descriptions: Our model uses keys we observed to be se-

mantically significant in natural language commands,
such as amenity, shop, and leisure.

For each category we gather the key values into lists.
Then, to handle multiple categories of values, we create all
possible combinations of these lists. For each combination,
we compute the average of their word vectors. We then
calculate the cosine distance between each of these averaged
vectors and the phrase vector for the referring expression.
Finally, we use the minimum cosine distance to identify the
referred landmark. We evaluate this approach against other
models in Section IV-B.2. The cosine distance between two
vectors is defined as the difference between 1 and their cosine
similarity.

D. Voronoi Maps and Planning

Fig. 3: Map partitioned into Voronoi cells. White holes
represent regions containing landmarks.

We use the AP-MDP planner to convert grounded LTL
formulae to high-level motion plans, and leave lower-level
motion planning to the drone’s autonomy system. Oh et al.

[4] partitions a hard-coded map into a grid of flyable zones
and target landmarks. However, since other real-world ge-
ometries can be large and complex, a more flexible approach
to map partitioning is required.

Our approach uses Voronoi cells [21]. We query OSM for
landmarks in a 300 meter radius square around a center point,
creating holes for each WAY polygon and five meter radius
square holes around each NODE. Then, we randomly generate
points inside the solid region, which are used to partition
the map into Voronoi cells as shown in Fig. 3. We have
observed the Voronoi cells can enable faster planning over
large distances. When comparing our results in the predefined
map by Oh et al. [4], Voronoi-based planning between two
landmarks 48.28 meters apart ran in 37.08 ± 6.43 seconds,
whereas the grid-based approach ran in 90.49 ± 0.27 seconds
(over three runs).

Further, the AP-MDP planner understands landmarks as a
single latitude and longitude coordinate, not a polygon. As
such, we represent WAYS in the planner by choosing one
corner NODE as its representative point.

To align with limitations of both natural language and
our framework, we filter certain landmarks. Landmarks need
to be named for the purposes of natural language com-
mands, so they must have a key:name. We exclude any
landmark containing the key highway, railway, place,
boundary, or waterway, because it is difficult to use a
singular representative point for very large landmarks.

IV. EVALUATION

We test that our system accurately grounds natural lan-
guage commands with references to landmarks, without
being trained on those landmarks. We conduct an end-to-
end user evaluation where participants give natural language
commands to the drone and observe the robot’s actions in
simulation. In addition, we perform a corpus-based evalu-
ation on a diverse set of maps to test the limits of our
framework. Finally, we demonstrate the system acting in a
real outdoor domain4.

A. User Evaluation

To test end-to-end performance on a map unseen to
the language model during training, we ran an in-person
user evaluation with 14 voluntary student participants. Each
student gave three spoken natural language commands to our
system and evaluated the resulting behavior of a Skydio R1
drone in a simulated outdoor map of Tulsa, Oklahoma.

The simulator is built in Unity [34], using outdoor envi-
ronments generated with the Mapbox SDK [35] (Fig. 1).
Using ROS and ROS# [36, 37], the simulator and plan-
ner communicate about the drone’s flight status and flight
trajectories. The simulator allows the participant to view
the trajectory the drone takes given the participant’s natural
language command.

As shown in Table I, our model accurately grounds natural
language commands to LTL and formed correct motion plans

4https://youtu.be/a-JGems7fzs
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for 76.19% of user commands. In this table, we also break
down failure cases. We observe challenges with two forms of
natural language commands: commands that include spatial
language, such as “Go to l1 near l2”; or commands with
verbs or unexpectedly long phrases that CopyNet has not
been sufficiently trained on. Spatial language phrases cause
CopyNet to not copy enough words, resulting in improper
groundings or improper LTL structures. We hypothesize
that CopyNet failures are due to the limited use of spatial
language in CopyNet’s training dataset, and that a more
representative training dataset would address these problems.
Also, planner errors were due to an indexing bug that we
resolved post-evaluation.

After using our system, users answered the NASA-TLX
questionnaire to measure workload on a scale of 0 to 20 (least
to most) [38]. On average, users reported high performance
and low workload (Table II). Additionally, we use the Sys-
tems Usability Scale (SUS) [39] to understand system ease
of use. We report a mean SUS score of 76.25 with standard
deviation of 18.39, which is above the average SUS score of
68 [40].

Percentage (%)

Speech-to-text errors 4.76
Incorrect grounding (Landmark Resolution) 2.38
Planner errors 4.76
Improper LTL (CopyNet) 11.90
Succeeded 76.19

TABLE I: System performance accuracy for in-person user
evaluation

Raw NASA-TLX (pts)

Performance 14.85± 05.38
Mental demand 03.50± 02.42
Physical demand 02.83± 04.49
Temporal demand 01.50± 01.50
Effort 03.40± 03.17
Frustration 05.50± 05.08

TABLE II: Raw NASA-TLX scores on a 20 point scale

B. Component Evaluation

We analyze the performance of individual components
of our language pipeline to understand failure modes and
potential improvements to our end-to-end system.

1) CopyNet Evaluation: We trained two models to eval-
uate CopyNet. The first is trained on natural language
commands with a single landmark, the second on natural
language commands with two landmarks. We trained with a
learning rate of 0.001 over 8 epochs for the single landmark
model and 15 epochs for the two landmark model. The
models were then evaluated against phrases with seen and
unseen landmarks as shown in Table III. For two landmark
commands, we observe on average that CopyNet grounds
69.18% of commands containing one unseen landmark and

53.49% of commands containing two unseen landmarks to
the correct LTL structure (Table III). CopyNet errors are
principally attributed to not copying enough words from
input to output.

Number of Seen (%) 1 Seen, Unseen (%)
Landmarks 1 Unseen (%)

One 100.00± 0.00 N/A 74.50± 2.88
Two 99.48± 0.20 69.18± 2.52 53.49± 2.95

TABLE III: CopyNet accuracy

2) Landmark Resolution Evaluation: We compare our
landmark resolution model to other models, as shown in
Table IV. We create the following baselines to evaluate the
effectiveness of our landmark resolution model. The Name
model represents a landmark by just its name phrase vector,
an average of word embedding vectors for every word in its
name. The Uniform model represents a landmark by assign-
ing equal weight to every OSM semantic feature (including
the name of the landmark) and averages their phrase vectors.
The term frequency-inverse document frequency (tf-idf) [41]
model weighs each semantic feature’s phrase vector with its
tf-idf score, a metric to downweigh frequent or uninformative
words by document, where each map is a document. All
models use minimum cosine distance to identify the referred
landmark.

Landmark names often contain proper nouns, which may
be OOV. We evaluate if using morphological information
(e.g. prefixes, suffixes, roots, etc.) helps the model process
OOV words by comparing fastText [31, 33], which uses
such information, to larger word embedding models like
Word2Vec and GloVe [25, 30].

We evaluate on 129 references collected from seven re-
searchers in the Brown University Humans to Robots Lab.
We showed each person OSM landmark information from
a single map and asked for different landmark referring
expressions by type(s): name, address, and description.

We define the grounding accuracy to be the percentage
of landmarks returned by our language model that matches
the intended reference. We calculate grounding accuracy and
mean reciprocal rank (MRR) of every landmark resolution
model and word embedding combination. MRR is defined
as the average of the reciprocal rank scores across multiple
queries. The reciprocal rank score of a query (a user’s
semantic reference) is the multiplicative inverse of the correct
landmark’s ranking. For example, if the landmark resolution
model ranks the true landmark corresponding to a user’s
semantic reference as third-most likely, the reciprocal rank
would be 1/3 (assuming the list is three landmarks long).

Table IV shows that our landmark resolution model per-
forms best with GloVe, which we attribute to its large
vocabulary.

C. Corpus-Based Evaluation

We test our language model’s ability to both identify the
appropriate LTL structure and properly extract landmarks



Name Uniform tf-idf Our Model

Accuracy fastText 41.86 43.41 51.94 58.14
(%) Word2Vec 42.64 45.74 54.26 58.91

Glove840B 44.96 48.06 55.81 68.99

MRR fastText 47.72 61.73 49.15 66.84
(%) Word2Vec 51.22 63.51 54.38 68.97

Glove840B 51.39 65.22 54.38 76.35

TABLE IV: Landmark grounding accuracy and MRR results
for different landmark resolution and word embedding
models

Fig. 4: AMT trajectory example. An OSM region with tra-
jectory that corresponds to F(lm(l1)lm & F(lm(l2)lm))

from unseen commands by collecting a test set of challeng-
ing natural language commands from AMT. We collected
commands for 22 urban American regions. (Table V).

AMT workers viewed a screenshot of a region in OSM
with an overlaid trajectory (Fig. 4). Trajectories allow us to
ask AMT workers for natural language commands without
extensive language prompting. At the start of each task, AMT
workers saw an example map and related example com-
mands. We further provided a detailed task description to en-
sure AMT workers responded with high-level commands, not
low-level, action-oriented instructions. Every AMT worker
was given semantic information about each landmark to
allow for flexibility in landmark referring expressions. We
provided Google search cards without the landmark’s address
as to not bias the AMT workers with OSM semantic data.
We have published 1540 collected commands, each formed
by a unique AMT worker. Compensation was $0.50 per task.

We achieve a 45.91% mean accuracy of grounding natural
language to correct fully-formed LTL. Some inaccuracies in
the corpus-based evaluation may be due to unclear AMT
instructions, which would lead to incorrect AMT worker
annotations.

V. CONCLUSIONS

We present a framework for grounding complex, unseen
natural language commands to motion plans for a robot oper-
ating in outdoor environments. For a 14-participant user eval-
uation, our system showed a 76.19% end-to-end accuracy and
a mean NASA-Task Load Index (TLX) performance score of
14.85 out of 20 points. In addition, we demonstrate a mean
accuracy of 45.91% for resolving a challenging corpus of
natural language referring expressions to previously-unseen

City Name Number of Landmarks Accuracy (%)

Jacksonville #2 16 17.14
Boston 39 20.00
New York #1 71 30.00
Chicago #2 26 35.71
Charlotte #1 24 35.71
Seattle 119 37.14
Denver #1 27 40.00
Philadelphia #1 21 44.29
Indianapolis 10 45.71
Denver #2 21 45.71
Jacksonville #1 19 47.14
Los Angeles #1 60 48.57
Los Angeles #2 62 52.86
Columbus #2 26 52.86
Chicago #1 22 54.29
Houston 32 54.29
New York #2 73 54.29
Philadelphia #2 90 55.71
San Diego #1 41 55.71
San Diego #2 31 55.71
Charlotte #2 15 57.14
Columbus #1 10 70.00

Average 38.86 45.91 ± 12.70

TABLE V: Corpus-based language pipeline accuracy

landmarks. We further present an improved planning model
for Linear Temproal Logic (LTL) expressions over large and
complex geometries. Last, we provide the collected corpus
of 1540 natural language to LTL trajectory commands.

Future work can focus either on improving components of
our framework, such as improving the copying mechanism
or adding a vision module to our landmark resolution model.
We can also direct work towards expanding the model’s
reach beyond navigation with OpenStreetMap. Search and
rescue operations require responders to refer to dynamic
entities, like people or cars, which are not listed in most
maps. Incorporating a probabilistic spatial distribution could
account for referring to these dynamic landmarks (e.g. “Find
the car behind the building”). Finally, the user’s location
could be used to resolve ambiguity between multiple suitable
landmark candidates.
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Journal für die reine und angewandte Mathematik, vol.
134, pp. 198–287, 1908.

[22] Z. Manna and A. Pnueli, The Temporal Logic of Re-
active and Concurrent Systems. Berlin, Heidelberg:
Springer-Verlag, 1992.

[23] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,”
CoRR, vol. abs/1409.0473, 2014.

[24] B. Hu, Q. Chen, and F. Zhu, “Lcsts: A large scale
chinese short text summarization dataset,” in EMNLP,
2015.

[25] J. Pennington, R. Socher, and C. Manning, “Glove:
Global vectors for word representation,” in Proceedings
of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Doha,
Qatar: Association for Computational Linguistics,
Oct. 2014, pp. 1532–1543. [Online]. Available:
https://www.aclweb.org/anthology/D14-1162

[26] K. L. Lovelace, M. Hegarty, and D. R. Montello,
“Elements of good route directions in familiar and

https://www.aclweb.org/anthology/Q13-1005
https://www.aclweb.org/anthology/Q13-1005
 https://www.openstreetmap.org 
 https://www.openstreetmap.org 
http://dl.acm.org/citation.cfm?id=1734454.1734552
http://dl.acm.org/citation.cfm?id=1734454.1734552
http://arxiv.org/abs/1601.01280
https://www.aclweb.org/anthology/P17-1005
https://www.aclweb.org/anthology/P17-1005
https://www.aclweb.org/anthology/P15-1096
http://arxiv.org/abs/1903.04521
http://arxiv.org/abs/1806.07832
http://arxiv.org/abs/1508.06491
https://www.aclweb.org/anthology/D14-1162


unfamiliar environments,” in International conference
on spatial information theory. Springer, 1999, pp. 65–
82.

[27] K.-F. Richter and S. Winter, Introduction: What Land-
marks Are, and Why They Are Important. Springer
International Publishing, April 2014, pp. 1–25.

[28] A. Rousell, S. Hahmann, M. Bakillah, and A. Mobash-
eri, “Extraction of landmarks from openstreetmap for
use in navigational instructions,” in Association of Ge-
ographic Information Laboratories in Europe, 2015.

[29] M. Drager and A. Koller, “Generation of landmark-
based navigation instructions from open-source data,”
in Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguis-
tics, 2012.

[30] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and
J. Dean, “Distributed representations of words and
phrases and their compositionality,” in Proceedings
of the 26th International Conference on Neural
Information Processing Systems - Volume 2, ser.
NIPS’13. USA: Curran Associates Inc., 2013,
pp. 3111–3119. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2999792.2999959

[31] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov,
“Enriching word vectors with subword information,”
arXiv preprint arXiv:1607.04606, 2016.

[32] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov,
“Bag of tricks for efficient text classification,” in Pro-
ceedings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers. Association for Computa-
tional Linguistics, April 2017, pp. 427–431.

[33] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and
T. Mikolov, “Learning word vectors for 157 languages,”
in Proceedings of the International Conference on Lan-
guage Resources and Evaluation (LREC 2018), 2018.

[34] Unity Technologies, “Unity.” [Online]. Available:
https://unity.com/

[35] Mapbox, “Mapbox unity sdk.” [Online]. Available:
https://github.com/mapbox/mapbox-unity-sdk

[36] M. Quigley, J. Faust, T. Foote, and J. Leibs, “ROS:
An open-source robot operating system,” in IEEE In-
ternational Conference on Robotics and Automation
Workshop on Open Source Software, 2009.

[37] Siemens, “ROS#,” 2017, https://github.com/siemens/
ros-sharp, [Accessed: 2018].

[38] S. G. Hart and L. E. Staveland, “Development
of nasa-tlx (task load index): Results of
empirical and theoretical research,” in Human
Mental Workload, ser. Advances in Psychology,
P. A. Hancock and N. Meshkati, Eds. North-
Holland, 1988, vol. 52, pp. 139 – 183.
[Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0166411508623869

[39] J. Brooke, “SUS-a quick and dirty usability scale,”
Usability Evaluation in Industry, vol. 189, no. 194, pp.
4–7, 1996.

[40] J. Sauro, “Sustisfied? little-known system usability
scale facts user experience magazine,” 2011. [Online].
Available: https://uxpamagazine.org/sustified/

[41] C. Sammut and G. I. Webb, Eds., TF–IDF. Boston,
MA: Springer US, 2010, pp. 986–987. [Online].
Available: https://doi.org/10.1007/978-0-387-30164-8
832

http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
https://unity.com/
https://github.com/mapbox/mapbox-unity-sdk
https://github.com/siemens/ros-sharp
https://github.com/siemens/ros-sharp
http://www.sciencedirect.com/science/article/pii/S0166411508623869
http://www.sciencedirect.com/science/article/pii/S0166411508623869
https://uxpamagazine.org/sustified/
https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1007/978-0-387-30164-8_832

	INTRODUCTION
	RELATED WORK
	APPROACH
	Linear Temporal Logic
	CopyNet
	Landmark Resolution Model
	Mapping Database
	Landmark Resolution Model

	Voronoi Maps and Planning

	EVALUATION
	User Evaluation
	Component Evaluation
	CopyNet Evaluation
	Landmark Resolution Evaluation

	Corpus-Based Evaluation

	CONCLUSIONS

