
Incrementally Identifying Objects from
Referring Expressions using Spatial Object

Models
Gaurav Manek, Stefanie Tellex

Humans to Robots Laboratory, Brown University
gaurav_manek@brown.edu, stefie10@cs.brown.edu

I. ABSTRACT

An important problem in human-robot interaction is
that of referring expressions: phrases used to identify a
particular object among others. Existing parsing models
all operate on entire sentences. Incrementally parsing
referring expressions is important for human-robot inter-
action and conversational feedback. We present a model
for parsing real-word referring expressions, trained and
tested on human-provided data. In our test corpus, when
presented with the entire sentence, our model ranks the
correct object as the most likely 60.3% of the time,
and ranks the correct object in the top three 79.0% of
the time. Given the entire sentence humans identify the
correct object 79.0% of the time. With 50%, 80% and
90% of the sentence, the model ranks the correct object
as the most likely 17.4%, 27.8%, and 36.2% of the
time. Our parser is capable of keeping up with human
speech, with 80% of all words processed on commodity
hardware within 10ms, and 95% of all words in about
300ms.

II. INTRODUCTION

Referring expressions are phrases used to identify a
particular object in a scene by describing it and its
relative position to other objects. The integration of
social feedback, where the robot shows its understanding
of a human’s utterances by generating small responses as
it listens to the human, can prompt clarifications from the
human and improve the accuracy of referring expression
parsing in interactive contexts. However, this requires
robots to be able to parse the human input incrementally:
updating its understanding as each next word is uttered.

In current work, referring expression parsing is done
in batch-mode, with the entire referring expression as
input. (Tellex et al. 2011; Matuszek et al. 2012; Artzi
and Zettlemoyer 2013; Fang, Doering, and Chai 2015)
During interactive use, batch-mode requires waiting for
the complete utterance before processing and providing

output, which introduces unaccceptable latency in the
robot’s response. For example, practical implementations
of the G3 system, as created by Tellex et al. (2011), can
take up to 30 seconds from the end of the input to the
start of a response. Our incremental parsing system up-
dates the distribution with each added word, substantially
reducing the delay between input and response.

In this paper we present an incremental referring expres-
sion parser that can process prepositional phrases. The
incremental parser works by using a conditional-random
field chunker to add parts of speech tags to sentences.
These tags are used to construct a parse tree, which is
then evaluated using an object-word model to resolve
references to objects and a preposition model to resolve
prepositional phrases. A caching method avoids recom-
putation cost and gives good worst-case time guarantees.

We evaluate our model on novel real-world data and
show that it assigns the correct object the highest proba-
bility 32.8% of the time and in the top-3 objects 63.5%
of the time. In comparison, humans correctly identify the
object 79.0% of the time, a unigram model 16.1% of the
time and random selection is only correct 7.2% of the
time. We also show how incremental performance con-
verges to the above values as more words are available.

Our parser is capable of keeping up with human speech.
When run on commodity hardware, 80% of all words in
the test set are processed within 10ms, and 95% of all
words in about 300ms. A cumulative density function of
the 4052 words in the test set is in Figure 6.

In the future, we aim to use this parser with a social feed-
back model and examine how human-robot interaction
is improved using a pick-and-place assay.

III. RELATED WORK

Prepositional phrases have not been subject to as much
computational analysis and study as noun- and verb-
phrases. The current research on the topic uses referring

expressions as parts of larger phrases, such as com-
mands. There is an existing family of related work by
Tellex et al. (2011), Matuszek et al. (2012), and Artzi
and Zettlemoyer (2013), all of whom present modern
models to process referring expressions. These models
all operate on entire input sentences and are designed
to parse general instructions and commands instead of
only prepositional phrases. Tellex et al. (2011) present
the G3 framework. We use several key ideas from this
paper: in particular we implicitly assume the binary
correspondence variable that their model maximizes.
Our algorithm is inspired in part by the algorithm they
present. Matuszek et al. (2012) present a state-of-the-
art process to learn models for a semantic parser and
word-classifier alignment. Our approach is substantially
different from Matuszek et al. since we do not separate
perceptual features from the language model of each
object. Also, in the learning phase of their algorithm,
they calculate the marginal probability of a particular
grounding and a particular word by performing a beam
search over all possible parses. We assume instead that
each node in the parse is independent of its sibling nodes,
which allows us to use dynamic programming to incre-
mentally build the distribution. Artzi and Zettlemoyer
(2013) train Combinatory Categorial Grammars (CCG)
with ambiguous validation functions to parse instruc-
tions, including spatial relations. While this approach is
more flexible and likely performs better on entirely novel
sentences, we deliberately choose a simpler model that
lends itself to a dynamic programming approach.

Fang, Doering, and Chai (2015) present a model to
collaboratively generate a referring expression, incor-
porating feedback from the human subject to generate
additional terms. The paper focuses on the generation of
referring expressions and the use of gestural feedback,
and so is of limited use in the context of this paper.

IV. TECHNICAL APPROACH

Given a sequence of words λ1, λ2, . . . , λt, we estimate
the distribution over the objects, of the objects that the
user is referring to as Γ, which is a distribution over
ξ (the set of all objects on the table). γ refers to an
arbitrary object in that distribution. We evaluate:

argmax
γ∈ξ

Pr(Γ = γ|λ1, λ2, . . . , λt) (IV.1)

We assume that we can factor the sequence of words
into separate independent constituents (Λ1,Λ2, . . . ,Λk),
according to the compositional structure of language
(Heim and Kratzer 1998), each of which corresponds
to either a grounding (a description of the object, such
as “the orange cube”) or a prepositional phrase (e.g.

“between the . . . ”). We assume these to be independent,
apply Bayes’ rule, assume uniform priors, and obtain:

∝
k∏

i=1

Pr(Λi|Γ = γ) (IV.2)

This factorization is done using a chunking algorithm,
(McCallum 2002). We assume that the chunkings given
here are certain, and so eliminate the probability term
associated with that. For speed, we approximate with a
chunking which has been shown to give good results in
practice.

A. Bottom-up Evaluation

Once we have a semantic tree, we can simplify the tree
in a bottom-up manner to obtain the final distribution.
Figure 1 illustrates this process and the three possible
cases we apply to convert the tree into a distribution
over objects.

CASE 1 Estimating the distribution of a grounding.

Each grounding in the tree is modeled by a distribution
that is obtained from the language model.

Pr(Λi|Γ = γ) =
∏
λ∈Λi

(
Q(γ, λ) + α∑

ω Q(ω, λ) + α · |ξ|

)
(IV.3)

The language model used is a unigram language model,
where each word λ refers to object γ with some joint
score Q(γ, λ). In our model, we set Q(γ, λ) to be the
number of times that λ was used to describe γ in our
training set. The distribution of simple noun phrase Λj

referring to object γ is given by Equation IV.3. We use
add-alpha smoothing arbitrarily setting α ≈ 5%. ξ is
the set of all objects, and |ξ| is the number of objects.
Our implementation will be able to perform a lookup in
O(|Λj |) time, where |Λj | is the number of words in Λj .

CASE 2 Simplifying a preposition and associated noun-
phrases.

We have preposition p ∈ P = {‘near’, ‘left’, ‘right’,
‘front’, ‘behind’, ‘between’}. We discuss the selection
of these in Section IV-D.

We begin with Pr(Λj |Γ = γ). We use the structure
of prepositional phrases to factor Λj into a preposition
and groundings. Λj,P refers to the subset of Λj which
describes the preposition (e.g. the word “between” or
“near”), and corresponds to P . Each Λj,i refers to the
subset of Λj which describes the ith object that the
preposition references (i.e. the object to which the target
is “near”) and corresponds to the distribution over all
objects Γj,i. Let n be the number of such groundings.

We use the factorization from Tellex et al. (2011), and
obtain:

=
∑
γ1∈ξ

· · ·
∑
γn∈ξ

(
n∏

i=1

Pr(Λj,i|Γj,i = γi)

)

S
(
f(γ, γ1, . . .) · θp

z

) (IV.4)

The last term relates the groundings, the target object,
and the preposition used to the correspondence vari-
able. We parametrize this relationship with feature-vector
function f , weights θp, logistic function S, and some
normalization factor z. We assume we can directly obtain
p from Λj,P using a lookup table. θp is calculated by
performing logistic regression, with the feature-vector
functions f detailed in IV-E. We observe that our naı̈ve
implementation takes time to the order of O(|ξ|n+1),
where |ξ| is the number of objects and n is the number
of groundings that each preposition has.

CASE 3 Combining multiple distributions.

In Figure 1, we simplify groundings Pr(Λ1|Γ = γ)
and derived distribution Pr(Λ2|Γ = γ) to get Γ, our
estimated distribution. As established in the initial fac-
torization, we simply take the inner product of all dis-
tributions to find the overall distribution. Equation IV.2
is reproduced here:

Pr(Γ = γ|λ1, λ2, . . . , λt) =

k∏
i=1

Pr(Λi|Γ = γ)

The naı̈ve implementation also takes time to the order
of O(|ξ|n+1), where |ξ| is the number of objects and
n is the number of groundings for which the marginal
distribution must be taken.

B. Incremental Parsing Algorithm

The algorithm we present uses the factorization pre-
sented above but operates in a bottom-up manner. We
represent the referring expression as a tree, updating it
each time we receive the next word from the user. This

representation allows us to perform computationally-
intensive tasks only once and cache intermediate results,
allowing us to produce intermediate results without hav-
ing to recompute them.

More precisely, we construct a semantic tree such that
each leaf node in the tree is a noun-phrase that refers
to some object. This tree is constructed by chunking
the input using conditional random fields and then using
deterministic transformations to turn the chunked input
into a tree. We convert each of the leaf nodes into
distributions over objects using a language model, and
then finally evaluate this structure to obtain the final
distribution.

C. Chunking and Semantic Tree construction

The algorithm’s input is a sequence of words which
needs to be transformed to a semantic tree for use with
later stages. The first stage in this transformation is to
assign a tag to each word that is similar to parts-of-
speech tags. Instead of using the full set of English
parts of speech, we use a reduced set developed for this
application.

We model the relationship between words and tags as a
conditional random field, where the tag for any particular
word depends on the neighboring words. We directly
estimate the distribution of tags using the existing library
Mallet, developed by McCallum (2002). The transfor-
mation from the tagged sequence to the semantic tree
is entirely deterministic, as the tags are tailored to the
specific form of the queries in the corpus.

D. Preposition Choice

To select the final set of prepositions P = {‘near’, ‘left’,
‘right’, ‘front’, ‘behind’, ‘between’}, we performed an
online test with humans to identify the prepositions
people naturally use when performing such tasks. We
gathered 68 prepositions over 58 sentences, and grouped
them by meaning. Figure 3 contains the exhaustive list.

Pr(Λ|Γ)

The orange cube between

the red the yellow

⇒

Pr(Λ|Γ)

Pr(Λ1|Γ) Preposition p ∈ P

Pr(Λ2,1|Γ) Pr(Λ2,2|Γ)

⇒

Pr(Λ|Γ)

Pr(Λ1|Γ) Pr(Λ2|Γ)
⇒

Pr(Λ|Γ)

(Case 0) (Case 1) (Case 2)
Fig. 1. The three cases of bottom-up evaluation.

33 between between
18 near closest (to) next (to) near nearer closer
7 in front in front (of) below bottom
4 left left
3 behind top (of) behind
3 far far (from) far away farthest

Fig. 3. The prepositions people naturally use, characterized by an ini-
tial test. The prepositions are grouped by meaning, with the frequency
of each group on the left. The exact usage is shown decreasing in
frequency from left to right.

From this test, the initial set of prepositions was selected
to be {‘near’, ‘far’, ‘left’, ‘right’, ‘front’, ‘behind’,
‘between’}, including the preposition “right” as the
counterpart to “left”. After gathering more data, the lack
of data forced us to drop ‘far’.

E. Feature-Vector Functions

Before features are computed, all scenes are scaled so
that longer axis lies from 0 to 1. The aspect ratio of axes
is maintained.

For all one-place prepositions (‘near’, ‘left’, ‘right’,
‘front’, ‘behind’), we use only three features. The target
object is located at (xγ , yγ), and the object referred to
by the preposition is at (x1, y1).

1) The difference in the x-coordinate:
f1((xγ , yγ), (x1, y1)) = xγ − x1

2) The difference in the y-coordinate:
f2((xγ , yγ), (x1, y1)) = yγ − y1

3) The Cartesian distance:
f3((xγ , yγ), (x1, y1)) =

√
(yγ − y1)2(xγ − x1)2

For the only two-place preposition (‘between’), we first
draw a line connecting the two grounding objects. We
project the point corresponding to the target object onto
that line, and compute the distance from the midpoint

along the line and perpendicular to the line, scaled by the
distance between the two objects. We have three different
features, all in terms of the parallel distance p and the
perpendicular distance q:

1) The parallel distance: f1(p, q) = |p|

2) The perpendicular distance: f2(p, q) = |q|

3) The smoothed product of the distances:
f1(p, q) = (|p|+ ϵ) · (|q|+ ϵ), with arbitrary ϵ = .1.

F. Incremental Parsing

In the previous section we factored the simplification of
the semantic tree into three separate cases. We cache the
result of each simplifying step, as illustrated in Figure 2.

1) Runtime Analysis: We use the runtime analysis of
each separate case to draw conclusions about the worst-
case time taken for the algorithm to produce an updated
distribution given one additional word.

Given the addition of one word, we need to make at most
one more recursive simplification than the depth of the
tree. In all our training data, the maximum tree depth
observed is never more than two, so an upper bound
of three simplifications per word input means that this
algorithm can easily meet the runtime requirements of
online algorithms.

More formally, given the runtimes and caching behavior
discussed earlier, the worst-case time to update the
distribution Γ to include the next word from the user
is O(|Λ|)

∏k−1
i O(|ξ|n+1) = O(|Λ| ∗ |ξ|kn), where k is

the number of layers in the tree.

When k = 3 and n ≤ 2, as in real-world examples, this
instead evaluates to the very manageable O(|Λ| ∗ |ξ|4),
where |Λ| is the number of words in the simple noun
phrase, and |ξ| is the number of objects in the scene.

◦

cache miss

cache miss

The orange cube

⇒

◦

cache miss

cache hit

The orange cube

cache miss

between

cache miss

the red

⇒

◦

cache miss

cache hit

The orange cube

cache miss

between

cache hit

the red

cache miss

the yellow
“The orange cube . . . between the red . . . and the yellow.”

Fig. 2. Cache behavior as words are added.

0 1 2 3 4 5 6 7 8 9
0%
20%
40%
60%
80%
100% 87%

7.5%3.1%0.9%1.2%0.1%0.1% 0% 0% 0%

No. of tags changed

Fr
eq

ue
nc

y

Fig. 4. Distribution of number of tags changed each time the chunker
is run with one additional word.

2) Chunking with Conditional Random Fields: The use
of conditional random fields complicates the analysis
somewhat because adding a word can affect the tags of
words already processed, which causes the tree structure
to change. In this case, we recompute all nodes in the
tree corresponding to words with changed tags, paying
the recomputation penalty. Other models such as Hidden
Markov Models also have this property.

We found that, in our test set, each time a word is added
an average of 0.23 earlier tags are changed. The observed
distribution is presented in Figure IV-F2, and is small
enough to not significantly increase our runtime.

V. EVALUATION

We collected a corpus of human-generated data us-
ing Human Intelligence Tasks (HITs) on the Amazon
Mechanical Turk (AMT) platform and hand-generated
scenes. We additionally use AMT to have humans eval-
uate our test set to obtain a baseline. We trained the
language model and spatial-prepositional model on a
training set of 11 scenes, each with an average of 14
objects, for a total of 417 input sentences. We trained
the chunker on hand-annotated parses of these input
sentences.

A. Data Collection

A set of HITs were created to elicit referring expressions.
A total of 19 scenes were constructed, each with a set of
about 12 to 15 objects scattered on a table and at least
6 identical orange cubes. For each orange cube in each
scene, 9 different workers were told to ask a robot across
the table for the indicated orange cube.

For each referring expression in the test set, we get three
separate human raters to identify the target and provide
feedback on the ease of understanding of the referring
expression. Refer to Figure 5 for how often humans
correctly identify the target, and Figure 7 for interrater
agreement.

B. Results

After training our model on the training set, we tested
it using a test set of 10 scenes, each with an average of
14 objects, for a total of 381 input sentences. The result
of running the parser on complete referring expressions
is in Figure 5.

Figure 5 shows the correctness rate of our algorithm and
of three baselines for comparison. The percentage next
to each preposition is the fraction of sentences in the test
set that contain this preposition, and so will not add up
to 100%. The baselines are:

1) The Human baseline, which was established by
having humans select the object best identified by
the referring expression, and scoring them against
our corpus.

2) The Unigram baseline, which is the expectation of
selecting the correct object using a simple unigram
object model across the entire input sentence.

3) The Random baseline, which is the expectation of
selecting the correct object by selecting one object
uniformly at random.

The Results column lists the rate of correct identification
using the entire sentence as input, the Top-1 column lists
the rate at which the correct object is rated the most
likely by the algorithm, and the Top-3 column lists the
rate at which the correct object is in the top 3 items.
For evaluation, the rate of correct identification is the
number of trials in which the algorithm assigns a higher
probability to the correct item than to any other item.
Should there be a tie, the rate is divided by the number
of items of equal probability.

The percentage on the left of each preposition is the
fraction of the test set that contains that preposition.

To evaluate incremental performance, we report perfor-
mance on the test set as a fraction of each sentence
provided to the algorithm. Figure 6 reports the evaluation
of the test set when our algorithm is run on it word-
by-word. Note that, due to the variation in lengths of
sentences, the charts are drawn by interpolating fraction
of each sentence into bins from 0 to 1. Because of
the structure of the algorithm, incremental evaluation
converge to the batch-mode results after the final word
in the sentence is presented.

Three separate lines are drawn to show the distribution
of the rank of the correct option. Each Top-k line
includes an example if the target object has at least as
much probability as the kth-highest probability in the
distribution. Should there be a tie, the rate is divided by
the number of items of equal probability.

0.0 0.2 0.4 0.6 0.8 1.0

Fract ion of sentence.

0.0

0.2

0.4

0.6

0.8

1.0
F
ra

c
ti

o
n

 c
o

rr
e

c
t.

Correctness rate by fract ion of sentence.

Top-1

Top-3
Top-5

Fig. 6. Performance and time taken on test set.

C. Imprecise and Incorrect Data

A major source of error is the presence of imprecise or
incorrect data in our training and test set. An imprecise
referring expression is one that does not uniquely iden-
tify a target object, and an incorrect referring expression
is one that does not identify the correct object. Here we
estimate how much of our error is due to imprecise and
incorrect referring expressions by evaluating our algo-
rithm on referring expressions with r humans correctly
identifying the target object.

Figure 7 shows the outcome of this when we restrict the
test set to referring expressions that have been correctly
identified by an increasing number of humans. The first
column is the control (using all data), the second includes
only referring expressions correctly solved by at least
one human, then at least two humans, and finally only

those by all three humans.

Rate of correct identification, Test (%)
r ≥ 0 ≥ 1 ≥ 2 = 3

Top-1 60.3 63.2 65.2 69.6
Top-3 79.0 81.0 82.7 85.1

(%) 100 93.1 84.5 59.3

Fig. 7. Correctness rate for different number of correct raters, with
size of data.

From this we see that genuine confusion accounts for
between 5-10 percentage points of the total error, which
is substantial.

VI. CONCLUSION

In this paper we have presented an incremental referring
expression parser that can process prepositional phrases.
The incremental nature of the parser is the key contri-
bution: state-of-the-art parsers all operate on complete
referring expressions.

The primary future task is to integrate this with the
social feedback framework on Baxter in the H2R lab
and conduct user studies to investigate if this provides a
measurable improvement to user interaction. Other future
work includes developing a model of prepositions that
better match human sensibilities. This may even extend
to learning the spatial shift between humans and our
system and adjusting spatial models to account for that.

From an algorithmic development perspective, a natural
extension of this algorithm is to replace the chunking and
semantic tree construction with a chart parser. This may
even allow the spatial model to inform the parsing, such
as by increasing the probability of parses that correspond
to narrower distributions. The increased power of the
model would be offset by the greater computational over-
head: further analysis and experimentation is required to
see if this is suitable for use in interactive scenarios.

Rate of correct identification, Test (%)
Baselines Results

Preposition Human Unigram Random Top-1 Top-3
26.8% between 88.2 14.3 7.1 77.5 97.1
21.3% near 82.5 17.2 7.3 64.7 88.1
14.2% behind 76.9 15.7 6.9 81.5 94.4
11.0% in front of 69.9 17.9 7.5 57.1 88.1
9.4% left of 89.8 16.1 7.3 69.4 100.0
5.8% right of 58.0 15.4 7.3 55.2 91.6

Total 79.0 16.1 7.2 60.3 79.0

Fig. 5. Performance on test set.

REFERENCES

Artzi, Yoav, and Luke Zettlemoyer. 2013. “Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions.” Transactions of the Associ-
ation for Computational Linguistics 1:49–62.

Barbu, Andrei, Siddharth Narayanaswamy, and Jeffrey
Mark Siskind. 2013. “Saying What You’re Look-
ing For: Linguistics Meets Video Search.” CoRR
abs/1309.5174. http://arxiv.org/abs/1309.5174.

Brill, E., and P. Resnik. 1994. “A Rule-Based Approach
To Prepositional Phrase Attachment Disambigua-
tion.” In eprint arXiv:cmp-lg/9410026, 10026. Oc-
tober.

Collins, Michael, and James Brooks. 1995. “Preposi-
tional Phrase Attachment through a Backed-Off
Model.” CoRR abs/cmp-lg/9506021. http : / / arxiv.
org/abs/cmp-lg/9506021.

Fang, Rui, Malcolm Doering, and Joyce Y Chai.
2015. “Embodied Collaborative Referring Expres-
sion Generation in Situated Human-Robot In-
teraction.” In Proceedings of the Tenth Annual
ACM/IEEE International Conference on Human-
Robot Interaction, 271–278. ACM.

Heim, Irene, and Angelika Kratzer. 1998. Semantics in
generative grammar. Vol. 13. Blackwell Oxford.

Liang, Percy, Michael I Jordan, and Dan Klein. 2013.
“Learning dependency-based compositional seman-
tics.” Computational Linguistics 39 (2): 389–446.

Matuszek, Cynthia, Nicholas FitzGerald, Luke Zettle-
moyer, Liefeng Bo, and Dieter Fox. 2012. “A Joint
Model of Language and Perception for Grounded
Attribute Learning.” In Proc. of the 2012 Inter-
national Conference on Machine Learning. Edin-
burgh, Scotland, June.

McCallum, Andrew Kachites. 2002. “MALLET:
A Machine Learning for Language Toolkit.”
Http://mallet.cs.umass.edu.

Merlo, Paola, Matthew W. Crocker, and Cathy
Berthouzoz. 1997. “Attaching Multiple Preposi-
tional Phrases: Generalized Backed-off Estimation.”
CoRR cmp-lg/9710005. http://arxiv.org/abs/cmp-
lg/9710005.

Ratnaparkhi, Adwait. 1998. “Statistical Models for Un-
supervised Prepositional Phrase Attachment.” CoRR
cmp-lg/9807011. http : / / arxiv . org / abs / cmp - lg /
9807011.

Rudzicz, Frank, and Serguei A. Mokhov. 2003. “Towards
a Heuristic Categorization of Prepositional Phrases
in English with WordNet.” CoRR abs/1002.1095.
http://arxiv.org/abs/1002.1095.

Tellex, Stefanie, Thomas Kollar, Steven Dickerson,
Matthew R Walter, Ashis Gopal Banerjee, Seth J
Teller, and Nicholas Roy. 2011. “Understanding
Natural Language Commands for Robotic Naviga-
tion and Mobile Manipulation.” In AAAI.

http://arxiv.org/abs/1309.5174
http://arxiv.org/abs/cmp-lg/9506021
http://arxiv.org/abs/cmp-lg/9506021
http://arxiv.org/abs/cmp-lg/9710005
http://arxiv.org/abs/cmp-lg/9710005
http://arxiv.org/abs/cmp-lg/9807011
http://arxiv.org/abs/cmp-lg/9807011
http://arxiv.org/abs/1002.1095

	Abstract
	Introduction
	Related Work
	Technical Approach
	Bottom-up Evaluation
	Incremental Parsing Algorithm
	Chunking and Semantic Tree construction
	Preposition Choice
	Feature-Vector Functions
	Incremental Parsing
	Runtime Analysis
	Chunking with Conditional Random Fields

	Evaluation
	Data Collection
	Results
	Imprecise and Incorrect Data

	Conclusion
	Acknowledgments

