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Abstract— Humans communicate about objects using lan-
guage, gesture, and context, fusing information from multiple
modalities over time. Robots need to interpret this commu-
nication in order to collaborate with humans on shared tasks.
Processing communicative input incrementally has the potential
to increase the speed and accuracy of a robot’s reaction. It also
enables the robot to incorporate the relative timing of words
and gestures into the understanding process. To address this
problem, we define a multimodal Bayes filter for interpreting
a person’s referential expressions to objects. Our approach
outputs a distribution over the referent object at 14Hz, updating
dynamically as it receives new observations of the person’s
spoken words and gestures. We collected a new dataset of
people referring to one of four objects in a tabletop setting and
demonstrate that our approach is able to infer the correct object
with 90% accuracy. Additionally, we augment and improve
our filter in a simulated home kitchen domain by learning
contextual knowledge in an unsupervised manner from existing
written text, increasing our maximum accuracy to 96%, even
with an increase in the number of objects from four to seventy.

I. INTRODUCTION

In order for humans and robots to collaborate in complex
tasks, robots should be able to understand people’s references
to objects in the external world. People provide these signals
continuously using language and gesture, and exploit contex-
tual background information to disambiguate requests. Cog-
nitive science experiments have shown that highly successful
teams rarely make explicit requests from one another and
instead infer correct actions as needs arise [16]. Responding
quickly and incorporating the relative timing of speech and
gesture is critical for accurate understanding in human-
human interaction [4].

To provide a foundation for these capabilities, we propose
a Bayes filtering approach for interpreting multimodal in-
formation from language and gesture [26]. Our framework
relies on a factored observation probability that fuses infor-
mation from language, context, and gesture in real time to
continuously estimate the object a person is referring to in
the real world. We demonstrate that our approach quickly
and accurately fuses multimodal information in real time to
continuously estimate the object a person is referencing.

We also show that our approach can use contextual in-
formation, such as the knowledge of which ingredients or
tools are likely to be used together, along with language and
gesture to disambiguate requests. In this paper we focus on
the home kitchen domain, generating contextual information

*First two authors contributed equally, and ordering is randomized.
All authors are with the Department

of Computer Science, Brown University.
{dwhitney,meldon,joberlin,stefie10}@cs.brown.edu

in an unsupervised manner by processing an online reposi-
tory of recipes. Recipes provide semi-structured data that can
be automatically mined for contextual information and then
combined with the person’s language and gesture to interpret
a request.

We evaluate our model in simulation and in the real world.
In simulation, we use Amazon Mechanical Turk to collect
referring expressions. We then test those expressions against
our system in a simulated kitchen of seventy items. In the
real world, we run trials with and without the robot. In trials
without the robot, the user refers to several objects in a row,
switching objects on a fixed schedule. In the robot trials, the
user asks the robot to hand over one of several items on a
table, and only switches once the robot has completed the
hand-off. In simulation, we have an accuracy of 95.55%. In
our non-robot trials, we have an accuracy of 90.77%. In our
robot study, the robot hands over the correct item on the first
try 80% of the time.

II. RELATED WORK

Language understanding for robots is a very active re-
search topic. We can divide the field into two domains:
continuous and batched interpretation. Batched interpretation
is highly applicable in written communication [15, 6, 14, 21],
but in recent years continuous interpretation has proved
more valuable in the real-time domain. Here we will focus
largely on works that have provided a method of continuous
language interpretation.

Kennington and Schlangen [13] created a discriminative
model of incremental reference resolution. In their work,
the authors use wizarded trials of reference resolution to
collect training sentences, which they use to train a logistic
regression model. Their work is quite successful, but requires
data collection and hand-crafting features. We found our
more simple unigram model to be sufficient once combined
with gesture. In a more complex domain, a more complex
model may be required.

Funakoshi et al. [9] also created a model of incremental
reference resolution. Like us, their model is based on a
Bayesian network design, and is able to consider different
domains for words. In “Bring me the red box, and the blue
one, too,” their model would understand “one” refers to the
general concept of box. We felt that work focused more on
depth in a single modality, where our goal was breadth across
multiple modalities.

The majority of gesture systems today focus on gesture
recognition [20] which is a classification task that does not
require the location or orientation of the gesture [27, 18].
Often, this recognition is performed in batch, and has a
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slightly different goal, namely to identify times in a video
clip in which certain gestures occur. Many approaches to
recognition use discriminative models [28, 23], which have
been shown to be more accurate than their generative coun-
terparts. The regression-like nature of pointing, however,
makes a discriminative approach more difficult. Pointing is
not a classification problem, as the goal is a real-valued set
of numbers, namely the coordinates in space (x,y,z) the user
is pointing to. Our solution is to extend a cone from the
wrist of the user, with objects closer to the center ray of the
cone considered more likely targets. This approach has been
successful before, as shown by Schauerte et al. [24]. In that
work they identify an object from a still image of a person
pointing. They extend a cone with a Gaussian distribution
from the tip of the arm.

Other work with collaborative robots exist. Foster et al. [8]
have done research with a bar-tending robot. This research
used a rule-based state estimator, and delivered drinks from
fixed positions behind the bar to multiple users based on
their speech and torso position. Similarly, we combine input
from multiple modalities, but our work uses a probabilistic
approach, allowing for smooth incorporation of dynamic
gestures such as pointing. Bohus and Horvitz [3] have
worked with a robotic guide that directs users searching for
specific rooms in a building. Again, our work differs in that
their model has prior knowledge about the location of the
desired rooms, whereas our does not know the location of
the desired objects. This system combines the modalities of
head direction and speech, but not any other form of gesture.

Matuszek et al. [22] present a multimodal framework for
interpreting references to tabletop objects using language
and gesture. Our approach similarly focuses on tabletop
objects but integrates language and gesture continuously.
Additionally, their work has the user sitting at a table,
meaning their pointing gestures occur several inches from
the referent. In our work, the user stands several feet from
the table, making our pointing gestures less easy to parse.

III. METHODOLOGICAL APPROACH
Our aim is to estimate a distribution over the set of objects

that a person could refer to, given language and gesture
inputs. We frame the problem as a Bayes filter [26], where
the hidden state, x ∈ X , is the the object in the scene
that the person is currently referencing. The robot observes
the person’s actions and speech, Z , and at each time step
estimates a distribution over the current state, xt:

p(xt|z0:t) (1)

To estimate this distribution, we alternate performing a
time update and a measurement update. The time update
updates the belief that the user is referring to a specific object
given previous information:

p(xt|z0:t−1) =
∑

xt−1∈X
p(xt|xt−1)× p(xt−1|z0:t−1) (2)

The time update includes the transition probability from
the previous state to the current state. Our various models for
this probability are illustrated in Figure 1 and Section III-B.

The measurement update combines the previous belief
with the newest observation to update each belief state:

p(xt|z0:t) =
p(zt|xt)× p(xt|z0:t−1)

p(zt|z0:t−1)
(3)

∝ p(zt|xt)× p(xt|z0:t−1) (4)

A. Observation Model

The observation model calculates the probability of the
observation given the state. Each observation is a set of the
user’s arm position and speech, 〈l, r, s〉 where:
• l represents a vector from the elbow (lo) to the wrist

(lv) of the left arm.
• r represents a vector from the elbow (ro) to the wrist

(rv) of the right arm.
• s represents the observed speech from the user, consist-

ing of a list of words.
Formally, we have an observation model of the form:

p(zt|xt) = p(l, r, s|xt) (5)

We factor our observations assuming that each modality is
independent of the others given the state. Namely, we are
assuming that if we know the true object, the probabilities
of the user pointing at that object with their left hand or right
hand are independent:

p(zt|xt) = p(l|xt)× p(r|xt)× p(s|xt) (6)

The following sections describe how we model each type of
input from the person.

1) Gesture: We model pointing gestures as a vector
through three dimensional space. First, we calculate a gesture
vector using the skeleton pose returned by NITE [1]. We
compute a vector from the elbow to the wrist, then project
this vector so that the origin is at the wrist. Next, we calculate
the angle between the gesture vector and the vector from the
elbow to the center of each object, and then use the PDF of
a Gaussian (N ) with variance (σ) to determine the weight
that should be assigned to that object. We define a function
A(o, p, x) as the angle between the point p and the center of
mass of object x with the given origin, o. Then

p(l|xt) ∝ N (µl = 0, σl)[A(lo, lv, xt)] (7)
p(r|xt) ∝ N (µr = 0, σr)[A(ro, rv, xt)] (8)

While gesture remains a continuous input throughout the
entire interaction, many gestures have little or no meaning,
such as scratching your nose or crossing your arms. To allow
for these without overloading the model with noise, we treat
any gesture observation that is greater than some angle θ
away from all objects as applying uniform probability to all
objects. Mathematically:

p(l|xt) ∝
{ 1
|X | if A(lo, lv, x

′) > θ,∀x′ ∈ X
N (µl = 0, σl)[A(lo, lv, xt)] otherwise

(9)

The observation for the right arm is calculated in the same
manner.
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Note that at each time step, a single pair of arm positions
are observed. Full gesture information results from the fusing
of positions over time.

2) Speech: We model speech with a unigram model,
namely we take each word w in a given speech input s and
calculate the probability that, given the state xt, that word
would have been spoken.

p(s|xt) =
∏
w∈s

p(w|xt) (10)

To account for words that don’t appear in the corpus,
we incorporate an epsilon probability for all words that
would otherwise have zero probability and then normalize
the distribution. When no words are spoken, we assume a
null word which has a uniform distribution over the objects.
This effect means that spoken words cause a discrete bump
in probability according to the language model, which then
decays over time.

B. Transition Model

Context is incorporated in our transition model, using
learned knowledge of related ingredients to better predict fu-
ture requests. In our home kitchen domain, the user requests
ingredients for a recipe. Therefore the desired ingredient is
the hidden state, and transitions are nonuniform. Recipes
generally use ingredients in similar orders. For example, dry
ingredients are used in sequence, or peanut butter follows
white bread and grape jelly. With this knowledge we are
able to estimate transition probabilities. In other domains,
estimates will be more difficult to generate, so we developed
a context-free transition model as well.

1) Modeling Non-Contextual Information: When contex-
tual information is not available, we assume that a person is
likely to continue referring to the same object, and at each
timestep has a large probability, c, of transitioning to the
same state:

p(xt|xt−1) =

{
c if xt = xt−1
1−c
|X |−1 otherwise (11)

This assumption means that the robot’s certainty slowly
decays over time, in the absence of corroborating informa-
tion, converging to a uniform distribution. It enables our
framework to integrate past language and gesture informa-
tion but also quickly adapt to new, conflicting information
because it assumes the person has changed objects.

2) Modeling Contextual Information: To model contex-
tual information, we assume that the next object that a person
requests depends on the previous object, as well as the
information the robot can observe from language and gesture.
We empirically calculate transition probabilities by applying
language modeling techniques to a large corpus of recipes, C.
We consider each recipe as a document, d0 . . . dn ∈ C which
contains an ordered list of ingredients, d0i . . . d

k
i . We treat

this list as an ordered list of states in our model and use it
to calculate transition probabilities by mining co-occurrence

statistics. Figure 1 provides the graphical models for the
four approaches we compare in this paper, using increasing
amounts of context to interpret a person’s language and
gesture.

Our first approach uses a unigram estimator based on
individual ingredient frequencies, but does not take the
history of past states into account [25, 19, 17]. For example,
one of the most frequent ingredients is salt, occurring 3.15%
of the time in our dataset. The unigram model makes it more
likely the robot will fetch the salt but does not incorporate
information about previous ingredients that were used. To
compute this model, we count the number of times we
observe state xt compared to the total number of observed
states (x0:n). Formally:

p(xt|xt−1) =
|{∀dki |dki = xt ∈ C}|
|{∀dki ∈ C}|

(12)

This model gives higher probabilities to more common
ingredients, and does not consider past states. An estimator
using a purely unigram model would always predict salt as
the most likely ingredient.

To incorporate more context we use a bigram model to
incorporate one previous state to inform the robot’s decision.
Formally, we model the probability of the next state, xt given
the previous state, xt−1 by counting bigram co-occurrence
statistics in the corpus:

p(xt|xt−1) =
|{∀dki , d

k+1
i ∈ C|dki = xt−1 ∧ dk+1

i = xt}|
|{∀dki , d

k+1
i ∈ C}|

(13)

The graphical model for the bigram approach appears in
Figure 1(c). Similarly, we can use two previous states to
create a trigram model:

p(xt|xt−1, xt−2) =

|{∀dki , d
k+1
i , dk+2

i |dki = xt−2 ∧ dk+1
i = xt−1 ∧ dk+2

i = xt}|
|{∀dki , d

k+1
i , dk+2

i ∈ C}|
(14)

The graphical model for the trigram approach appears in
Figure 1(d). While increasing the size of the history adds
contextual information, it causes issues with sparseness and
compute time, with diminishing returns on accuracy. In our
research we found a plateauing of accuracy after trigrams.

3) Training: Our corpus consists of 42,212 recipes col-
lected from www.allrecipes.com using a web crawler.
We chose the website for its large collection, varied cuisine,
and most importantly, ingredient ordering. All ingredients are
listed in the order they are used in the recipe. Each recipe
includes a title, the ingredients, the steps, and an end of
recipe tag.

The following algorithm applies equations (13) and (14)
to our corpus.
• Given the previously used ingredient (or past two in-

gredients), for each recipe, iterate through the list of
ingredients.
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(a) Uninformed Transitions (no de-
pendency on corpus or previous
states).
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(b) Unigram model (dependency on
corpus, but not previous states).
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(c) Bigram model (dependency on
corpus as well as one previous state).
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C
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gt+1 st+1

(d) Trigram model (dependency on
corpus as well as two previous states).

Fig. 1. Different models for our approach, using increasing amounts of context. Shaded variables are observed.

• If a match is found between the input and the current
ingredient(s), record the next ingredient in the recipe.

• After scanning all recipes, return the list of ingredients
used after the given input, ranked by the number of
times they occurred.

• A numerical probability can be constructed by dividing
each count by the sum of the counts.

Examples of the top ten unigrams, bigrams and trigrams
appear in Figure 2.

C. Model Parameters

We tuned model parameters by hand. We generated the
language model from hand-crafted data combined with the
results of our pilot studies. After our initial tuning, we fixed
model parameters, and results reported in the paper all use
the same fixed set of parameters. We expect that as we add
larger sets of objects, a language model trained using data
from Amazon Mechanical Turk or other corpora will be
necessary to increase robustness over a larger set of objects.

In our experiments, we had the following parameters: the
uniform transition probability, c, was 0.9995. We set this
parameter to give an object that has 100% confidence an
approximately 10% drop in confidence per second with all
null observations. Standard deviation for the Gaussian used
to model probability of gesture, σl, σr, and σh was 1.0
radians. We found that this standard deviation allowed for
accurate pointing, without skewing the probabilities during
an arm swing. The language model consisted of 16 unique
words, containing common descriptors for the objects such as
“bowl,” “spoon,” “metal,” “shiny,” etc. It also included words
that were commonly misinterpreted by the speech recogni-
tion system, such as “bull” when the user was requesting a
bowl.

D. Algorithm

Algorithm 1 shows pseudocode for our approach, gener-
ating a belief distribution over the possible current states
bel(xt), while Figure 3 shows an example of the system’s
execution. The person’s speech is ambiguous, and the sys-
tem initially infers an approximately bimodal distribution
between the two bowls. The robot does not hand over any
object, which elicits a disambiguating response from the
person, who points at the appropriate object. The model
incorporates information from language and infers the person
is referring to the blue bowl.

Input: bel(Xt−1), zt

Output: bel(Xt)

for xt ∈ Xt do
b̄el(xt) =

∑
xt−1∈Xt−1

p(xt|xt−1) ∗ bel(xt−1)

if not is null gesture(l)

b̄el(xt) = p(l|xt) ∗ b̄el(xt)
if not is null gesture(r)

b̄el(xt) = p(r|xt) ∗ b̄el(xt)
for w ∈ s do

b̄el(xt) = p(w|xt) ∗ b̄el(xt)
end
bel(xt) = b̄el(xt)

end
Algorithm 1: Interactive Bayes Filtering Algorithm

Although in this example we are demonstrating the ap-
proach at two specific timesteps, the system updates its
distribution at 14Hz, enabling it to fuse language and gesture
as it occurs and quickly updating in response to new input
from the person, verbal or nonverbal. Our approach runs
on an Asus machine with 8 2.4 GHz Intel Cores that is
also performing all perceptual and network processing. This
system is used in conjunction with the Baxter Robot and a
Kinect V1.

IV. EVALUATION

We evaluated our model through several methods. We first
ran simulated trials in our home kitchen domain to detect the
efficacy of using contextual information in specific domains.
We then ran a system comprehension user study without
contextual information to ensure the system’s reliability in
interpreting referring expressions in a closed environment.
Finally, to both show the effectiveness of our model in the
real world, as well as demonstrate the ways in which social
feedback can play into the model in the future, we ran real
world experiments with a robot using this system interacting
with human users asking for common kitchenware1.

1Unfortunately, we were unable to test our contextual model in real world.
Our contextual simulation study had 70 items in the pantry, and we currently
do not have access to a system that can identify and interact with 70 items
at once.

3334



salt
white sugar
butter
all-purpose
flour
water
eggs
garlic
olive oil
vanilla extract

(a) Unigrams.

salt, black pepper
all-purpose flour, baking powder
baking soda, salt
baking powder, salt
butter, white sugar
white sugar, eggs
all-purpose flour, salt
onion, garlic
all-purpose flour, baking soda
eggs, vanilla extract

(b) Bigrams.

all-purpose flour, baking powder, salt
all-purpose flour, baking soda, salt
baking powder, baking soda, salt
white sugar, eggs, vanilla extract
all-purpose flour, baking powder, baking soda
butter, white sugar, eggs
eggs, vanilla extract, all-purpose flour
all-purpose flour, white sugar, baking powder
vanilla extract, all-purpose flour, baking powder
olive oil, onion, garlic

(c) Trigrams.

Fig. 2. Top ten ingredient unigrams, bigrams, and trigrams from our training procedure.

(a) Ambiguous speech. (b) State estimate during ambiguous
speech.

(c) Clarification with gesture. (d) State estimate after clarification.

Fig. 3. After an ambiguous spoken request (a), the model has a uniform distribution between two objects (b). The robot responds by indicating confusion.
Clarification with gesture (c) causes a probabilistic update leaving the model highly confident it has inferred the correct object (d). The robot responds by
smiling and handing the user the object they referenced.

A. Simulation Results

Next we assess our model’s accuracy at inferring ingredi-
ents based on a person’s requests. Context is most valuable
when there are many possible objects that the robot could
hand to the person, and we wanted to evaluate our model
on a large set of recipes and varied natural language input
so we conducted this evaluation using Amazon Mechanical
Turk data along with simulated gesture input.

As the number of ingredients the robot interacts with
increases, it needs more information to pick the correct one.
For example, in a small kitchen there may only be white
sugar. The request “hand me the sugar” is unambiguous
and the robot easily identifies the correct ingredient. A
larger kitchen may have white sugar, brown sugar, and
powdered sugar. The request has now become ambiguous,
and contextual information becomes necessary to infer the
correct object that the user desires.

For our study, we presented a series of photos to AMT
workers. Each photo contained all the ingredients needed
for a recipe in a kitchen setting. The workers typed re-
quests to the robot. Each worker typed two requests for
each ingredient: an ambiguous request, and an unambiguous
request. Once the data was collected, the requests were fed
as simulated speech to our system. We assessed accuracy by
recording whether the system inferred the correct ingredient
for each request. We collected a total of 1640 commands
over 5 recipes not used in the training set.

Our system had a simulated ‘pantry’ of objects. The set
of ingredients were taken from the cookbook How to Cook
Everything, under the sections “Kitchen Basics”, “Everyday
Herbs”, and “Everyday Spices” [2]. The ingredients are

described as staple ingredients.
Each ingredient in the pantry had several words associated

with it. These words were the singular and plural forms of the
ingredient’s name, and allowed for the observation update to
link speech to specific ingredients. For instance, lemon had
two words associated with it: lemon and lemons. We did not
add more descriptive words, like yellow, or round, but we
are eager to explore more expressive observation models.

Due to the difficulty of collecting multimodal data for
our large dataset, we augmented our system with simulated
gesture. We created gesture observations by assuming that a
person produced pointing gestures which identified a subset
of ingredients, one of which was the one they were asking the
robot to fetch. To simulate different amounts of ambiguity
in gesture, we varied the size of the cluster, d, between 3, 5,
10, and ∞; here ∞ corresponds to using language only and
no gesture.

Tables I(a), I(b), and I(c) show an evaluation of our
system using uniform, unigram, bigram and trigram models.
We report the model’s accuracy at identifying the correct
object to fetch for each request after the person’s natural
language input using 90% confidence intervals. First we
observe that more specific gestures (with smaller cluster
size d) leads to higher model performance. This result is
unsurprising because the system has access to significantly
more information when augmented with simulated gesture.

As a high-level trend, we observed a significant increase in
performance comparing uniform to unigram. In our unigram
model, the robot generates a prior distribution based on
common ingredients learned from text, but does not consider
objects previously used in the recipe. This model lets us infer
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TABLE I
SIMULATED CONTEXT, LANGUAGE, AND GESTURE

(a) Results using Gesture without Language

Model d = 3 d = 5 d = 10 d = ∞
Uniform 23.41% ± 1.73% 15.49% ± 1.46% 8.84% ± 1.15% 0.67% ± 0.329%
Unigram 34.82% ± 1.94% 27.74% ± 1.83% 19.21% ± 1.60% 5.43% ± 0.92%
Bigram 42.74% ± 2.01% 35.73% ± 1.94% 28.23% ± 1.83% 12.68% ± 1.34%
Trigram 41.04% ± 1.99% 32.50% ± 1.91% 27.38% ± 1.81% 12.74% ± 1.35%

(b) Results Using Gesture with Ambiguous Language Requests

Model d = 3 d = 5 d = 10 d = ∞
Uniform 74.39% ± 1.78% 70.91% ± 1.84% 67.13% ± 1.91% 47.99% ± 2.03%
Unigram 75.61% ± 1.74% 72.56% ± 1.81% 70.61% ± 1.84% 52.74% ± 2.03%
Bigram 77.80% ± 1.69% 76.22% ± 1.73% 72.56% ± 1.81% 53.11% ± 2.03%
Trigram 77.38% ± 1.69% 75.12% ± 1.76% 72.68% ± 1.81% 53.72% ± 2.03%

(c) Results Using Gesture with Unambiguous Language Requests

Model d = 3 d = 5 d = 10 d = ∞
Uniform 94.63% ± 0.92% 93.96% ± 0.97% 93.41% ± 1.00% 87.50% ± 1.35%
Unigram 95.12% ± 0.87% 94.27% ± 0.94% 94.39% ± 0.94% 89.09% ± 1.27%
Bigram 95.67% ± 0.82% 95.00% ± 0.89% 94.27% ± 0.94% 88.66% ± 1.28%
Trigram 95.55% ± 0.84% 94.70% ± 0.90% 94.39% ± 0.94% 88.41% ± 1.30%

the correct action for ambiguous commands such as “fetch
the sugar,” which most often refers to white sugar rather
than brown. This result demonstrates improved performance
using information from text in all conditions, but does not
integrate contextual information.

Third, we observed a further improvement using the
bigram model and trigram model, which use the previous
state as context. This performance gain is present under
all language conditions, but is increased when commands
are ambiguous and decreased for unambiguous commands.
Table I(c), which uses unambiguous language, shows good
performance by all models, including the uniform model
which uses no information from text, and a very small posi-
tive effect from context. In contrast, Table I(a) shows results
using gestures only, with increasing amounts of ambiguity;
here there is a very large improvement from context, going
from 23% correct with uniform to 42.7% with the bigram
model. In this scenario, gesture provides a strong signal
but also contains a large amount of noise; combining this
information with context from previous requests significantly
improves system accuracy.

Finally, Table I(b) shows a modest improvement from
context. We expect to see a larger gain with more ambigu-
ous language. In our data, many requests were ambiguous
because of spatial language not capable of being understood
by our approach. For example, a request such as “Please
hand me the onion beside the garlic” would be ambiguous
to our system because it cannot process spatial referring
expressions. This provides an opportunity for context to
disambiguate, but since both ingredients are used similarly,
the contextual models are unable to determine what the
user desires. In our data, many such examples occurred
because images showed all ingredients for the same recipe.
In the future we plan to explore language collected from
environments where the ingredients were not laid out, and

also over speech recognition errors; we expect contextual
input would matter more in these scenarios. Despite the
limitations of the language data collected on AMT, we still
observed a modest improvement from context in this type of
language. For instance, in one trial a user requested soy sauce
by stating “get me the soy sauce it is next to the garlic.” The
unigram model estimated the user wanted garlic, as garlic is
used more often than soy sauce, but the bigram model looked
at the last used ingredient, coconut milk, and calculated soy
sauce was used more often than garlic in that context. The
trigram model plateaued relative to the bigram model, most
likely due to issues of sparsity in the training data.

B. System Comprehension User Study Results

Our real-world experiments measured our algorithm’s per-
formance when a person referred to an object visually and
with gesture. The subject stood in front of a table with
four objects placed approximately one foot apart, forming
four corners of a square. We instructed subjects to ask for
the indicated object in the most natural way possible, using
whatever combination of gesture and language they felt was
appropriate. We indicated the object to refer to using a laser
pointer, and we periodically shifted to a different object on
a predetermined schedule. They wore a microphone, and we
used the HTML5 Speech Recognition package in conjunction
with Google Chrome to recognize speech. This package
reported incremental output as recognition proceeds, and
we performed a model update each time a new word was
perceived. We used 13 subjects, and each subject participated
in five trials, for a total of 65 trials.

Results showing the percent of the time the estimated most
likely object was the true object appear in Table II with
95% confidence intervals. During a typical trial, the model
starts out approximately uniform or unimodal on the previous
object (we did not reset the model between trials.) As the
subject points and talks, the model quickly converges to the
correct object. Our first set of results give a sense of how
quickly the model converges.

To assess overall accuracy, we report the system’s accuracy
at the end of a trial in Table III. Multimodal accuracy with
language and gesture is more than 90%, demonstrating that
our approach is able to quickly and accurately interpret
unscripted language and gesture produced by a person.

The difference in accuracy between gesture alone and the
multimodal output is not as large as one might expect. This
is in part caused by the small delay in speech recognition
software as opposed to the instantaneous gesture input. Ad-
ditionally, many subjects leaned towards ambiguous speech,
such as “Hand me that” while pointing, causing the speech
accuracy for those trials to be 0%. There were some users,
however, who relied on an equal mix of both, and showed
large leaps in accuracy between arms and multimodal. The
most extreme example is of a user who, over their five
trials, achieved only 45.5% accuracy with gesture alone and
42.2% with speech alone, yet managed to achieve 85.7%
multimodal accuracy, only 2 percentage points away from
the sum of the two probabilities, showing the ease at which
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TABLE II
REAL-WORLD RESULTS

Random 25%
Language only 32.4% +/- 10%
Gesture only 73.12% +/- 9%
Multimodal (Language and Gesture) 81.99% +/- 5.5%

TABLE III
REAL-WORLD RESULTS (END OF INTERACTION)

Random 25%
Language only 46.15%
Gesture only 80.0%
Multimodal (Language and Gesture) 90.77%

alternating speech and gesture can give incredibly accurate
results overall. While a combination of ambiguous speech
and gesture such as “that spoon” followed by a gesture would
be more accurate than just a gesture, we found that most test
subjects either spoke with complete ambiguity or none, using
phrases either of the form “hand me that thing” or “hand me
the silver spoon”. Therefore we were unable to fully test this
hypothesis.

C. System Interaction User Study Results

After successfully demonstrating our system in a closed
environment, we ran trials involving a human user interacting
with a robot. Whenever the system placed more than 70%
confidence in any single object, the robot handed the person
that object. We ran 40 trials, each with four objects on a
table, two on each side of the robot. Users were instructed
to pick an object and continue requesting it until the robot
handed them the correct object. In 80% of the trials the robot
handed over the correct object on the first try. In 65% of the
trials the robot handed over the desired object after a single
referring expression. These trials had an average latency of
1.2 seconds between the end of the referring expression and
the beginning of the robot’s reaction. On average, it took
15.8 seconds from the end of the referring expression to the
time the user received the object they had requested.

In these trials, we calculate the latency in robot reaction
when the robot correctly inferred the desired object as a result
of the user’s first referring expression. 65% of our trials fall
into this category, resulting in an average 1.2 second delay
between the end of the user’s referring expression and the
beginning of the robot’s reaction. Since the robot was able
to react before the user finishes their referring expression,
some of the delays were slightly negative. This resulted in
an average of 15.8 seconds between the time the user finished
their request and the time they received the object they had
referenced.

In the remaining 35% of the trials that the robot did not
correctly infer the desired object from the first referring
expression, 15% were failures where the robot simply didn’t
respond to the first referring expression and 20% were
failures where the robot handed the user an object other
than the one they requested. The former failure type can

be largely attributed to rapid gestures and speech that were
missed by our system. Mistranscription also played a role,
but less of one. The latter failure type appears largely due
to some quirks of NITE, in which the generated skeleton is
actually superimposed slightly above the actual location on
the body. As a result, the calculated vector came closer to
the object behind the desired one, causing a failure.

V. CONCLUSION

We have demonstrated a Bayes filtering approach to inter-
preting object references. Our approach incorporated learned
contextual dependencies, and ran in real time. This paper
demonstrates steps toward continuous language understand-
ing and more effective human-robot interaction.

In the future we plan to expand our language model to in-
corporate models of compositional semantics and lower-level
visual features so that the robot is not limited to prespecified
object models. Additionally we aim to enable the robot to
generate social feedback based on its model using a POMDP
framework [12], ultimately aiming to demonstrate that by
providing appropriate social feedback, the robot elicits dis-
ambiguating responses from the person, increasing overall
speed and accuracy of the interaction. Dragan and Srinivasa
[5] created a framework for generating legible gesture, and
we anticipate that enabling a robot to respond using gestures
as in Holladay et al. [10] will further increase the efficacy
of this system. We also plan to extend our language model
so that it supports models of compositional semantics by
embedding a parsing chart into the state [11, 7]. These
methods will enable the robot to understand nested referring
expressions such as “the bowl on the table” incrementally.
Finally, we aim to extend our approach beyond just object
references; a similar modeling approach could be used to
understand references to locations in the environment, and
ultimately general command interpretation.
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