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Abstract

Robotic collaboration requires not just communication from the human to the robot, but also from the robot to the
human. We call this robot-to-human communication social feedback. In order to flexibly and intelligently generate
social feedback, we describe a Partially Observable Markov Decision Process that incorporates the human’s belief
about the robot’s intent. We then engineer a system that can respond in near-real time that is supplemented with
a multithreaded interaction model that allows for more responsive human-robot interactions. Initial evaluation
in simulation shows improvement in interaction length in a toy domain and improvement in accuracy in the full
domain.
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1 Introduction

Collaboration is a process that relies heavily on com-
munication for its success. When humans collaborate,
this communication is both obvious and implicit—we
not only instruct and request aid from each other, but
we also tacitly monitor our partners for signs of ap-
proval and understanding while producing these signals
ourselves. However, in robotics, many of these vital
components of successful communication are missing or
lost. The absence of these signals likely account for nu-
merous failures in human-robot collaborative tasks. In
order to give robots these missing communicative skills,
we employ social feedback signals to provide human-like
communication to both inform the human participant
of the robot’s state and request information from the
participant.

Feedback refers to the responses that are received by
an agent when it takes some action. These feedback re-
sponses inform the agent about the success or failure of
its actions. Social feedback therefore refers to social sig-
nals that convey this information. These can be explicit
signals, such as “I want this object”, or implicit signals,
such as a perplexed expression. When humans interact
with another human, they use this feedback to improve
the flow and clarity of the collaboration, which in turn
improves its success. For my thesis work, I have de-
veloped a framework that describes how robotic agent
should likewise generate social feedback for its human
partner in human-collaborative tasks, and show that it
improves the speed and accuracy of human-robot inter-
action.

Many existing works focus on the task of inter-
preting human communications[Tellex et al., 2011, Ma-
tuszek et al., 2012, Tellex et al., 2012, Misra et al.,
2014], but provide no response if the interpretation
fails. As a consequence, it becomes difficult to tell
whether the robot is still making progress in interpret-
ing the request, or has failed. Some works do allow
for robotic responses to ambiguous situations, but the
manner of their responses are hard coded, often limited
to generic requests, such as “please repeat the ques-
tion”. In this work, we provide a means to generate
these requests in the form of language and gesture that
can flexibly represent the robot’s state as well as inform

the human in such a way so that allows the human to
help the robot as much as possible.

Specifically, we address the object delivery task. In
this task, a set of objects are laid out on a table within a
Baxter robot’s reach. A human participant requests an
object from the robot using speech and gesture (point-
ing). The robot must interpret the human’s speech and
gesture and deliver the requested object to the human.
The task then repeats with the remaining objects on
the table. This task is achievable without social feed-
back; the robot need only wait until enough informa-
tion is given and then deliver the correct object. How-
ever, we will show that by adding social feedback ac-
tions, such as asking questions, looking at objects, and
pointing at objects, we will achieve better accuracy and
speed as well as improved user experience.

Figure 1: The experimental setup from the partic-
ipant’s perspective: a Baxter robot has six objects
within reach. The participant stands in front of the
table to provide speech and gesture requests

We will solve this problem by formulating it
as a Partially Observable Markov Decision Process
(POMDP)[Kaelbling et al., 1998], which will allow us
to dynamically and flexibly determine how to choose
social feedback actions. First, we will describe a two
agent model and use this to motivate the construction
of a POMDP. The crucial improvement we make over
existing robot interaction models is that we maintain a
state variable that tracks the human’s interpretations
of the actions the robot takes. We will next discuss how
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we solved this POMDP and other measures we took to
allow our system to respond dynamically and fluidly.

As an initial evaluation, we run our model in simu-
lation to showcase improved speed and accuracy in the
object delivery task.

2 Related Work

This work is primarily built off of Eldon [2015], which
describes a system for incremental speech and gesture
recognition in an object-delivery domain. In previous
work [Wu et al., 2015], the model from Eldon [2015]
is expanded from a bayesian inference model into a
POMDP model that can ask yes-no questions. In this
work, we generalize the idea of the affect of robot’s ac-
tions on humans state within a POMDP framework.

Work demonstrating the importance of social feed-
back in human-human communication has been done
in the field of psycholinguistics. In Clark and Krych
[2004], one human (labeled the builder) builds a Lego
model according to instructions given by another hu-
man (labeled the director). In the feedback-free trials,
the director’s instructions were prerecorded, and the re-
sulting models were very inaccurate (in fact no model
was completely correct). In the feedback trials, errors
were reduced by a factor of eight. Our goal is to enable
a robot to collaborate with a human in this way.

Other work with collaborative robots exists, for ex-
ample, Foster et al. [2012] have done research with a
bar-tending robot. This robot follows a rule-based state
estimator, and delivers drinks from fixed positions be-
hind the bar to multiple users based on their speech
and torso position. We expand the scope of the prob-
lem: we do not use a rule-based state planner, our items
are not in fixed positions, and our gesture model uses
pointing instead of torso position.

In Bohus and Horvitz [2014], a robotic building
guide directs guests to find specific rooms. Our project
addresses a similar domain, requiring the interpretation
of users’ requests, but differs in the task and the type
of communication necessary to accomplish that task.

Other work involving robotic object delivery also
exists. Some approaches have no social feedback and
will either deliver the wrong item or do nothing if given
a request it does not understand [Tellex et al., 2011,
Matuszek et al., 2012, Tellex et al., 2012, Misra et al.,
2014]. Language only feedback models also exist [Chai
et al., 2014, MacMahon et al., 2006, Tellex et al., 2011,
Matuszek et al., 2012, Guadarrama et al., 2014, Hewlett
et al., 2011, Misra et al., 2014], and several gesture only
models [Waldherr et al., 2000, Marge et al., 2011].

Matuszek et al. [2014] shows promising work in fus-
ing language and complex gesture to understand ref-
erences to multiple objects at once. We build off this
work by including social feedback.

In the field of computational linguistics, previous
work exists in resolving referring expressions incremen-
tally, such as Schlangen et al. [2009], Zender et al.
[2008], Gieselmann [2004]. Other work in that commu-
nity also incorporates gesture, and/or eye gaze [Ken-
nington et al., 2013, 2015], but the given work does not
incrementally update gesture along with speech. Chai
et al. [2011] provides work towards resolving referring
expressions in a different domain, but does not address
the task of acting on the results of these referring ex-
pressions. In Kruijff et al. [2008], they propose a sys-
tem for planning to ask for clarifications, which covers
a wide scope of knowledge failures. In this work, we
are interested only in a small subset of these clarifica-
tions, and address the problem of how and when these
clarifications should be used in a concrete human-robot
collaboration task.

POMDP approaches to dialog [Young et al., 2013]
are quite common, but treat dialog as a discrete, turn-
taking interaction. The Dialog State Tracking Chal-
lenge [Williams et al., 2013] a notable driving force for
computer dialog understanding, treats dialog in this
turn-based way. Our model is also based off a turn-
based interaction, but we provide a systems solution to
allow our model to behave more incrementally.

Interactive POMDPs (I-POMDPs) [Gmytrasiewicz
and Doshi, 2005] describe a multi-agent POMDP that
allows agents to anticipate each other’s actions by form-
ing beliefs over action and observation histories. This
work attempts to accomplish the same, but makes more
specialized assumptions that allow for a more tractable
state space.

Alternative approaches to POMDPs include cogni-
tive architecutres such as SOAR [Laird, 2012] or DI-
ARC [Schermerhorn et al., 2006]. By taking a prob-
abilistic approach, we can seemlessly fuse information
from multiple sources and explicitly reason about the
robot’s uncertainty when choosing actions.

3 Technical Approach

3.1 POMDP Overview

Markov Decision Processes (MDPs) are models that de-
scribe how an agent can take actions to transition be-
tween states, receiving rewards for its actions. Partially
Observable Markov Decision Processes (POMDPs) are
used to model MDPs where the true state is not known.
Instead, the agent receives observations that are gen-
erated by the true state, and must infer what the true
state is from the observations. Thus, the agent main-
tains a belief over true states which is updated as it
receives new observations. In subsequent sections, we
will refer to this belief over hidden states as b. The
agent must then use this belief state to determine which
action to take to maximize its expected value of the re-
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ward over time. This splits the POMDP into two main
components, a state estimator and a policy generator.
A typical graphical model for a POMDP is provided in
figure 2.1

ot at ot+1at−1ot−1

stst−1 st+1

Figure 2: A graphical model representation of a
POMDP

3.2 Model Description

To model this human-robot interactive task, we will use
a POMDP. To motivate the construction of our model,
consider two-agent model constructed depicted in fig-
ure 3.

ot ωτ ot+1 ωτ+1ωτ−1ot−1

st

στ

st−1

στ−1

st+1

στ+1

Figure 3: A two-agent model based off two POMDPs

We represent human states st, robot states στ , and
observations generated by the robot ωτ and by the hu-
man ot. Observe that the structure of this model resem-
bles two POMDPs combined together at their actions
and observations. The lower POMDP is the POMDP
from the human’s perspective: the robot has some hid-
den states στ , which the human observes by means of
ωt. The human takes actions ot to influence the robot’s
state σt. The upper POMDP models the interaction
from the robot’s perspective: the human’s state st is
hidden from the robot, and the robot must infer it from
observations ot. When the robot takes action ωτ−1,
it affects the human’s state st. Crucially, each agent
treats the other agent’s action as an observation that
influences their belief about the other agent’s hidden

state. Thus, the human’s actions affect the robot’s be-
lief about the human’s state, which is what we call b
above. Importantly, the reverse is also true: the robot’s
actions affect the human’s belief about what the robot’s
hidden state is. We will call the human’s belief over the
robot’s hidden state β.

In the following section we will use this dual struc-
ture to inform the construction of our POMDP as ap-
plied to our object delivery domain.

3.3 POMDP Definition

We define our object-delivery POMDP as a tuple
{S,A, T,R,Ω, O}:

• Each s ∈ S is a tuple of 〈ι, β, I〉

– I is the set of all objects that the robot
can deliver. Each object is parameterized
by a name, a unigram vocabulary, and a po-
sition; for example: a red bowl would be
represented 〈redBowl, [red, red, bowl, bowl,
plastic], (1.0, 2.0, 0.0)〉. We assume the set
of all objects is known.

– ι ∈ I is the object the human desires. This
is a hidden variable.

– β is a distribution over the robot’s hidden
states, as defined above. In this domain,
the robot’s hidden state contains which ob-
ject the robot will hand the human, or which
object the robot believes the human wants.
We assume the human estimates the distri-
bution over the hidden state by observing
the actions the robot has taken. Specifi-
cally, βt(ιt) = p(ιt|a1:t−1). While this vari-
able is technically unknown, we make some
assumptions about the transition functions
and initialization so βt’s value is known at
every time step.

Since our state is composed of both hidden and
known states, it resembles a Mixed Observabil-
ity MDP [Ong et al., 2010], and we leverage the
computational benefits of having both hidden and
known states.

• The set of actions A consists of both social
and non-social actions. Non-social actions are
pick(i) (picking up and delivering an object i)
and wait. Social actions are point(x), pointing
at a location x; look(x), looking at a location x;2

and say(p), informing the human that the robot
believes the desired object has property p, where
p is an element of some object’s vocabulary.

1In this model, we have omitted the dependency between an action and the observation from the next timestep. In the POMDP dis-
cussed in this paper, we will not use this dependency for any action. Rather, the affect of the actions on the observation is encapsulated
in the state.

2x is chosen from the set of points that describe the surface of the table. For computational reasons, in this work, we restrict it to
the set of object locations
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• T (s, a, s′) = p(s′|s, a). We make the assumption
that the human’s desired object ι does not change
unless the robot picks up object ι. The set of all
objects I transistions to I \ {i} when the robot
chooses action pick(i). For each action in A,
we define a “reverse observation function” that
describes our assumptions about how the human
imagines the robot generates actions (which the
human sees as observations) given a hidden robot
state. This allows us to define a transition func-
tion for β. The transition dynamics are described
in greater detail in section 3.3.2.

• R(s, a, s′) returns a numeric reward from transi-
tioning from s to s′ by taking action a. In this
domain, we incentivize our robot to pick the cor-
rect object by giving it a +10 reward if it delivers
the correct object and a −50 reward for picking
the incorrect object. We also give negative re-
wards for taking various actions: wait receives
a −1 reward (to incentivize the robot to finish
the task quickly); look(x) receives a reward of
−2; say(p) receives a reward of −3; point(x) re-
ceives a reward of −4. These additional penalties
for social actions reflect the penalty for “both-
ering the user”, as well as the time it takes to
execute these actions. These reward values were
chosen experimentally to result in a high rate of
pick accuracy.

• Observation o ∈ Ω represents an observation gen-
erated by the human. These are tuples of lan-
guage and gesture: 〈l, g〉. Language utterance l
is represented by a string of any number of words,
obtained by transcribing microphone input using
webkit’s speech recognition API through google
chrome. A gesture g is represented by a vector
from the participant’s shoulder to their wrist, and
all gestures are interpreted as a straight-armed
point. This vector is obtained using the Kinect’s
tracking software.

• O(o, s, a) = p(o|s, a) describes the probability of
of seeing an observation o from the human given
their state s and the robot’s last action a (though
assume all observations are independent of a).
We choose an observation function that reflects
that the human is an agent attempting to com-
municate which object they desire to the robot,
and thus chooses to generate observations that
are more likely to result in the robot delivering
the correct object. This is gone into more detail
in the next section, section 3.3.1.

For quick reference, a table of variables is provided
in figure 4.

3.3.1 Observation Function

According to our double-agent model, the human emits
observations as though it were an agent interacting
with our robotic agent. Thus, we choose an observa-
tion model that depends on the human’s belief about
the robot’s state, β. Specifically, the human will choose
an action according to its estimate that the robot will
hand them their desired object. In order to define this
function, we will first have to define a base-level obser-
vation function.

Base-Level Observation Function The base level
observation function describes the probability of an ob-
servation conditioned only on the object: p(o|ι). For
our object delivery domain, we will define two base-
level observations, one for language and one for ges-
ture. These observation functions are the ones defined
in Eldon [2015].

Speech Model: Language is interpreted according to a
smoothed unigram speech model. An utterance l is
broken down into individual words, w ∈ l:

p(l|ι) =
∏
w∈l

p(w|ι) =
∏
w∈l

count(w, ι.vocab) + α

|ι.vocab|+ α|words|

where count(w, ι.vocab) is the number of times
word w appears in ι’s vocabulary. This allows for re-
peated words to have greater probability of being spo-
ken.3 α is a smoothing value chosen to be 0.05. |words|
is the total number of words in all object vocabularies.

Gesture Model: All gestures are interpreted as a
straight armed point. These pointing gestures are se-
lected from a normal distribution centered at the ob-
ject’s location.

Define the angle between the vector defined by
the pointing gesture and the vector from the human’s
shoulder to the object ι to be θι. The probability of a
particular gesture is then

p(g|ι) = N (θι|0, v)

where v is a hand-tuned variance. We choose
v = 0.4.

Posterior Observation Function We will use the
base-level observation function defined above to define
a posterior observation function that considers how the
base-level observation function will affect the robot’s
belief. Specifically, the human chooses an action pro-
portional to the probability that the robot will hand
them the desired object ι if the human had chosen that

3In the future, object vocabularies will be collected from data; repeated words are therefore meaningful as ways that are commonly
used to describe objects.
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Variable Explanation
s = 〈ι, β, I〉 A single state, defined by a tuple

I The set of all objects
ι ∈ I The object desired by the human

β A distribution over I. βt(it) = p(it|a1:t−1)
i = 〈name, vocab, location〉 An object, defined by a name, vocabulary, and location

a A robot action, pick(i), look(x), point(x), or say(x), observed by human
o = 〈l, g〉 An observation received by the robot, generated by the human.

l A string of language.
g A pointing gesture.
L An indicator variable that is 1 if language is observed.
G An indicator variable that is 1 if gesture is observed.
cL A constant that describes the probability of observing language.
cG A constant that describes the probability of observing gesture.
α A smoothing parameter for the unigram model.

p(at|it+1) A reverse observation function
At A diagonal matrix describing the reverse observation function p(at|it+1) for all values of it+1

T A matrix describing all transition probabilities p(ιt+1|ιt)

Figure 4: Table of Variables

action. The robot receives this action as an observa-
tion.

p(o|s) = p(o|ι, β) , ηp(ι|o)

= η
p(o|ι)p(ι)∑
ι′ p(o|ι′)p(ι′)

where η is a normalization factor.
Next, we will set p(ι) = β(ι). p(ι) describes the

robot’s belief in ι. This value is represented in the
robot’s belief-state vector, b. But since the human does
not know b, it uses its estimate of b, β. Our new ex-
pression is

p(o|s) = η
p(o|ι)β(ι)∑
ι′ p(o|ι′)β(ι′)

Using β as a prior for our observation function in-
centivizes the robot to take actions that modify β in
such a way that increase the probability of useful ob-
servations, while in turn decreasing the probability of
getting observations that tell the robot things it al-
ready knows. This result falls out of our assumption
that the human is more likely to provide observations
that communicate its intentions to the robot well.4 For
a worked example in a toy domain, see the appendix.

Modification for Object Delivery Domain In
the object delivery domain, we have both speech and
gesture, which we assume are conditionally indepen-
dent given the state.

p(o|s) = p(l, g|s) = p(l|s)p(g|s)

In addition, it is possible to observe no speech or
no gesture input. Let L be a random variable that is
1 if the agent receives a language observation and 0
otherwise. Similarly, let G be a random variable that
is 1 if the agent receives a gesture observation and 1
otherwise. For all states s:

p(L = 1|s) = cL

p(L = 0|s) = 1− cL

p(G = 1|s) = cG

p(G = 0|s) = 1− cG

where cL and cG are constant values less than 1.

We will use a separate posterior observation func-
tion for language and gesture. Combined with the
probability to receive a null speech or null gesture ob-
servation, the full expression is as follows:

p(o|s) = ηp(l|s)p(g|s)

= ηp(L|s)
[

p(l|ι)β(ι)∑
ι′ p(l|ι′)β(ι′)

]L
· p(G|s)

[
p(g|ι)β(ι)∑
ι′ p(g|ι′)β(ι′)

]G
4It is perhaps more accurate to say that the human does not pick proportional to the probability, but picks the action with the

greatest value of p(ι|o). However, this deterministic observation function would lead to irregularities when faced with real human
users who do not pick perfectly. Using a softmax function with a tuned temperature parameter would allow us to balance the strong
guarantees of of a deterministic max with the flexibility of “proportional to probability”.
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3.3.2 Transition Function

We make the assumption that every component of our
state transitions conditionally independent of the other
components given the previous state. In addition, each
state variable depends only on its previous value and
the action taken.

p(ιt+1, βt+1, It+1|ιt, βt, It, at)
= p(ιt+1|ιt, at)p(βt+1|βt, a)p(It+1|It, at)

Object Transition Function As previously stated,
we assume the object the human desires does not
change unless its desired object is picked up. If the
desired object is picked, it transitions uniformly at ran-
dom between the remaining objects.

If at is pick(ιt),

p(ιt+1|ιt, at) =

{
1/(|I| − 1) if ιt+1 ∈ I and ιt+1 6= ι

0 otherwise

If at is any other action:

p(ιt+1|ιt, at) =

{
1 if ιt+1 = ιt

0 otherwise

Object Set Transition Function The set of ob-
jects I changes only when an object is picked up. The
picked object is removed from the set.

If at is a pick(i) action:

p(It+1|It, at) =

{
1 if It+1 = It \ {i}
0 otherwise

If at is any other action:

p(It+1|It, at) =

{
1 if It = It+1

0 otherwise

Belief Transition Function The human’s belief
about which object the robot will hand over, βt, is in-
formed by the actions the robot takes. In the same
way that the robot’s belief state b is a summary of all
the observations the robot has made [Kaelbling et al.,
1998], βt is a summary of all observations the human
has made of the robot’s actions, and reflects the hu-
man’s estimate about the robot’s true state. We there-
fore update βt according to Bayesian probabilities in
the same way that b is updated. The following is a
standard Markovian update:

For a particular state ιt, its probability after t ob-
servations is given as follows:

p(ιt+1|o1:t+1) = p(ot+1|ιt+1)
∑
ιt

p(ιt+1|ιt)p(ιt|o1:t)

Recall that β is a distribution over states (objects)
ιt, so we can use this rule to write an update for each
entry of β.

βt+1(ιt+1) = p(ιt+1|a1:t)

= p(at|ιt+1)
∑
ιt

p(ιt+1|ιt)p(ιt|a1:t−1)

= p(at|ιt+1)
∑
ιt

p(ιt+1|ιt)βt(ιt)

This requires us to specify p(at|ιt+1). Recall that
actions are operating as observations from the perspec-
tive of the human, making this expression a reverse
observation function. We must provide a reverse ob-
servation function for each action. These will often be
very similar to the base-level observations described in
Section 3.3.1, though adapted slightly to suit being per-
formed by a Baxter robot. See the appendix for details.

We must also specify a transition function,
p(ιt+1|ιt). We will use the object transition function
described earlier.

We can rewrite our element-wise update for the
whole β vector using a matrix multiplication:

βt+1 = AtTβt

where At is a matrix representing the reverse ob-
servation function p(at|ιt+1) and T is a matrix repre-
senting the transition function p(ιt+1|ιt). If the set of
items ι = {ι1, ι2, . . . , ιn}, A is a diagonal such that

aij =

{
0 if i 6= j

p(at|ιt+1 = ιi otherwise

and T is a matrix with entries

tij = p(ιt+1 = ιi|ιt = ιj)

This gives us a deterministic transition function for
β:

p(βt+1|βt, at) =

{
1 if βt+1 = AtTβt

0 otherwise
(1)

If we assume that β0 begins as the uniform distri-
bution over objects, we can now calculate βt for any
given time step deterministically. However, there are
many assumptions that were made, and there is addi-
tional expressiveness that can be used by allowing for
non-deterministic updates to β. However, we lead the
exploration of this space for future work.
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3.4 Policy Generation

It is possible to calculate an optimal policy to solve our
POMDP, however, due its size, doing so is intractable.
Moreover, we would like to solve our POMDP at speeds
suitable for interaction. Fortunately, approximate so-
lutions exist which allow us to trade off accuracy
for computational time. One such solver is the Par-
tially Observable Sparse Sampling (POSS) algorithm
[Gopalan et al., 2016], which uses Monte-Carlo Tree
Search [Coulom, 2006] and Upper Confidence Bound
exploration [Kocsis and Szepesvári, 2006] to derive a
policy for our POMDP. In order to improve the accu-
racy of the planner, we also provide a heuristic for the
random rollouts that prevents the rollouts from select-
ing pick actions that are unlikely to select the correct
objects.

We implement this model within the Brown UMBC
Reinforcement Learning And Planning [MacGlashan]
framework, which allows for many standard AI and
Reinforcement learning algorithms to be used with our
domain.

3.5 Incremental System Design

Interactive systems that involve speech often make an
assumption that the interaction can be split neatly into
turns: first one speaker provides a complete utterance,
and then the other. This is often not the case, and it
is a subtle matter to determine when one turn is com-
pleted and the other agent can begin to speak. As a
consequence, many systems involving dialogue, includ-
ing earlier iterations of this project, do not “hear” ut-
terances or gestures while the agent is speaking or act-
ing. Any speech or gestures the human made while the
robot was executing its action were dropped and never
incorporated into the robot’s belief about the state. An
additional problem was that while the robot was plan-
ning its next action, it would also not incorporate any
observations made. This was a significant effect, as it
could take up to 10 seconds of planning for the robot
to make its next move. As a consequence, most ob-
servations would be dropped unless we incorporated a
system of turn-taking where we waited a set amount of
time for the human to provide any speech and gesture
input.

In order to create more fluid interactions, we em-
ploy a multithreaded solution that separates the state
estimation, planning, and executions of actions. This
allows our robot to simultaneously track the human’s
belief, plan its next move, and interact with the human.
A diagram of the system is available in figure 5

State Tracker The state tracker incorporates obser-
vations from the human at a very high rate, allowing

the tracker to always have access to the most up to
date state estimation. However, our domain descrip-
tion requires the robot to choose an action between
each consecutive observation. We address this by feed-
ing the model a wait action unless the planning thread
has provided a different action. This requires minimal
dependency between actions and observations, which
our model avoids.

Asynchronous Planner A separate thread runs the
planning code. Planning can take several seconds, dur-
ing which the robot is not only idle, but also deaf and
blind. Running the planning code on a separate thread
allows the robot to continue observing and interacting
with the human while the robot plans its next move. In
addition, we can use several planning threads at once,
with separate policies to control the robot’s face, arms,
head angle, etc. In our work, we use one thread to plan
for the POMDP domain described above, and another
to animate the Baxter’s face to show facial expression
of increasing confusion with the entropy of the belief
state.

Action Queue The planning threads push their ac-
tions onto a queue which executes them one by one, al-
lowing the planning threads to resume planning if the
actions they produce take some time to execute. An
additional advantage is that this allows the robot to be
constantly acting, with minimal idle time.

4 Evaluation

Due to difficulties with the POSS algorithm, we return
to Belief Sparse Sampling [Kearns et al., 2002] (BSS)
to evaluate the efficacy of our model (for more details
about POSS, see section 4.3). BSS, however, takes sev-
eral minutes to generate an action, which is too slow for
user interaction. Instead, we evaluate the performance
of our model in simulation. A procedure for user stud-
ies with human participants is also described.5

4.1 Results in Simulation

To evaluate the performance of our model, we run sim-
ulated trials with two different domains: first with a
toy domain, and second with the full social feedback
domain.

4.1.1 Toy Domain Results

The toy domain is a simplified version of the full social
feedback domain. Objects are represented by binary
string bits of length 3, and observations tell the robot
that a particular bit has some value. There is no noise

5We do note that it would be possible to run the full domain in real time to test with users by precomputing and caching a policy
for each belief state that describes the optimal action to take from that state. This is the scheme that we used in Wu et al. [2015]
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Figure 5: An overview of multithreaded robot interaction framework. Each node is run on a separate thread. Edges
are labeled with the type of data transmitted

.

in observations. The agent can take wait and pick ac-
tions in the non-social trials, and in the social trials,
can take non-social actions as well as inform(x, y)

actions, which represent informing the human that the
robot believes that the xth digit has value y.

We run 25 trials in simulation. Results are pre-
sented in figure 6. We see a sharp reduction in the
number of actions needed until the robot can success-
fully pick the correct object, while accuracy remains
the same. In this simple domain, it is easy to identify
the correct object with enough observations, account-
ing for the high accuracy in both trials. However, tak-
ing social feedback actions allows the agent to request
the observations that it needs from the human to com-
plete the interaction as quickly as possible. Notice also
that the variance in the number of actions the robot
takes until the first correct pick is very small in the so-
cial trials, while it is very large in the non-social trials.
Social feedback actions allow the agent to control the
interaction so that it is as brief as possible.

Figure 6: Results in simulation for the toy domain.
turns until pick is the number of timesteps until first
correct pick, pick acc is the ratio of correct picks to to-
tal picks, avg time is the the time to compute a single
action

4.1.2 Full Domain Results

We run two simulated trials: one without any social
feedback actions (only pick(i) and wait), and one
with non-social feedback actions and a random subset
of six social feedback actions (to reduce computation
time). There are four objects on the table for each
trial. Each trial uses a different set of randomized ac-
tions (to reduce computation costs). Results are pre-
sented in figure 7.

We see a small, but statistically significant improve-
ment in accuracy at the cost of slightly less than one
additional action for the first correct pick. The less pro-
nounced effects of social feedback are likely due to the
greater number of observations that are possible, and
the relative probability of seeing a useful observation is
reduced. This more complicated domain is also ham-
pered by our reduced horizon of 2, allowing the planner
to only consider up to two actions in the future. In the
full domain, the agent is much less likely to receive
enough observations to correctly pick the object within
two timesteps, even using social feedback actions.

To see more improvement in speed and accuracy,
we would likely need to use a larger planning horizon,
which is only possible with approximate solvers such as
POSS. In addition, increasing the number of objects,
i.e., the complexity of the task, would likely result in
a sharper difference between the number of turns re-
quired to give the human the correct object. The robot
is unlikely to receive a useful observation unless it can
signal to the human which observation it requires.
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Figure 7: Results in simulation for the full domain.
turns until pick is the number of timesteps until first
correct pick, pick acc is the ratio of correct picks to to-
tal picks, avg time is the the time to compute a single
action

4.2 User Studies Procedure

Users are acquired from convenience sampling by invit-
ing volunteers from the Brown University CIT building.
For each user, two trials are run: a baseline trial with-
out any social feedback actions, and a social-feedback
trial with social feedback actions enabled. For each
trial, the user is given a microphone and invited to use
speech and gesture to ask the robot for a specific item
on the table, and to not change that object until it was
picked up. After their requested object is picked up,
they request a new object and repeat the procedure un-
til the robot has handed them all objects on the table.
It is decided randomly whether the social or non-social
trial is performed first for each user. Between the two
trials, they are given a survey to assess the qualitative
aspects of the interaction, including metrics such as the
robot’s perceived intelligence, friendliness, etc.

This procedure is based off a previous user study
run for an earlier iteration of this project. In this user
study, we noticed a small effect showing the increased
speed of interaction with social feedback actions en-
abled. However, this study was run with only six par-
ticipants, so these effects were likely not statistically
significant. When user studies are run in the future, we
will have a larger sample size, but also increase the diffi-
culty of the task by adding more objects, which should
further highlight the necessity of social feedback.

Interesting metrics to measure include are how the
perception of the robot is correlated to the actions the
robot takes, as well as the accuracy and speed of the in-
teraction. We may also consider a longer-running user
study to investigate how people learn how to interact
with the robot.

4.3 What happened to POSS?

Initially we planned to use POSS to solve our POMDP.
As an approximate solver, it would have been possible
to solve the POMDP at speeds quickly enough for real-
time user interaction. In addition, we would not be
limited by short planning horizons, which prevent our

robot from planning far into the future. However, de-
spite our efforts to integrate POSS, the nature of the
algorithm was shown to be incompatible with our do-
main.

POSS is a Monte Carlo Tree Search algorithm that
uses Upper Confidence Bounds (UCB) to decide which
action to take. Specifically, selecting an action is
treated as a multi-armed bandit problem, where the
reward is the discounted reward for taking that action.
The downside to this approach is that if taking an ac-
tion results in an incorrect pick (which gives the agent a
reward of −50) anywhere down the tree, then the plan-
ner is unlikely to ever try that action again. Because
the POSS algorithm relies on random rollouts to gener-
ate actions when it has no estimates for the best action,
it is extremely likely to choose an incorrect pick action.
In attempt to rectify this behavior, we created a heuris-
tic for the random rollouts that prevents the algorithm
from choosing pick actions that are unlikely to be cor-
rect. Unfortunately, this heuristic was not enough (see
figure 8. Using POSS with this heuristic, we achieve
only 25% accuracy, which is only about twice as good
as random chance. The algorithm only waits an aver-
age of about one action before deciding to pick. But,
at the same time, the computation time is extremely
fast: much less than a second, sometimes more than
100 times faster than Belief Sparse Sampling.

Figure 8: Results for POSS with Heuristic function
in the toy domain.turns until pick is the number of
timesteps until first correct pick,pick acc is the ratio
of correct picks to total picks, avg time is the the time
to compute a single action.

Despite removing the main source of negative re-
ward, the randomness of the rollout was still obscur-
ing the true utility of taking most actions. We then
attempted to remove the randomness by forcing the
rollout to choose the action according to Belief Sparse
Sampling. This removed much of the variance in the
q-values of the actions (which describe the utility of a
given action), but this still did not produce a consis-
tent policy for the following reason: Upper Confidence
Bound methods tend to underestimate the q-values of
actions. However, for terminal actions like pick(i) in
the toy domain, it will give fairly accurate results. As
a result, the more beneficial inform(x, y) actions can
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be given lower q-values than terminal pick(i) actions,
resulting in very incorrect policies.

In order to solve our POMDP, we will need to rely
on approximate solvers. Whether the domain or POSS
can be tweaked to be compatible must be investigated.
If they cannot be made compatible, we will explore
other approximate solving methods, including policy
improvement and non-UCB-based Monte Carlo meth-
ods.

5 Future Work

The next task will be to run user-studies with human
participants to compare the performance of the system
with and without social feedback. This will require
the use of approximate solvers to allow us to solve the
POMDP in real time, or to precompute policies.

We would also like to expand the domain by allow-
ing for more modalities of user input, such as other
types of gestures as well as more subtle cues such as
expression or emotion.

This thesis work relies on very simple observation
functions. In the future, we will investigate more
sophisticated observation functions, allowing for lan-
guage interpretation that can understand prepositional
phrases and other ways of composing referring expres-
sions.

Other areas for further exploration can be found by
removing many of the assumptions made in this the-

sis. For example, the set of objects on the table was
assumed to be known. Attempting to learn from the
human more about the set of objects, such as their
vocabularies and location, would be an interesting ex-
pansion.

Use of the β variable can be expanded to include un-
certainty over the value of βt, allowing for ambiguity
in how the human interprets the robot’s action. In the
same vein, additional modes of interaction from both
the robot and human can be explored.

The object delivery domain can also be abstracted
to a domain where the goal is not to determine which
object the human wants, but the human’s intent in gen-
eral. This system of tracking the human’s belief about
the robot’s communicated intent can be widely applied
to other human-robot interaction tasks.
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7 Appendix

7.1 Posterior Observation Function: Toy Example

In order to demonstrate and motivate the posterior observation function, we will define a toy domain. In this toy
domain, the states are the following: {AA,AB,BA,BB} as well as β, which is a distribution over these states.
The observations are {A , A,B , B}, which mean “the first character is an A”, “the second character is an A”,
“the first character is B”, “and the second character is a B” respectively. These observations are provided by the
human. The agent can take actions CX which is informing the human that the agent believes the Xth character
is a C, as well as “picking” the object or waiting. For the basel level observation, the human always gives truthful
observations, and has equal probability of generating an observation pertaining to a particular character. We will
see how this affects the POMDP observation function, which incorporates β.

Consider the following situation:
Intially both b, the robot’s belief about the human’s desired object and β, the human’s belief about the robot’s

belief, are uniform. The true state is AA.

t b β a o
0 [0.25, 0.25, 0.25, 0.25] [0.25, 0.25, 0.25, 0.25]

The robot then receives an observation A . The new beliefs are:

t b β a o
0 [0.25, 0.25, 0.25, 0.25] [0.25, 0.25, 0.25, 0.25]
1 [0.50, 0.50, 0, 0] [0.25, 0.25, 0.25, 0.25] A

Next, the robot can choose to take an action. If it chooses to wait, this is the resulting state

t b β a o
0 [0.25, 0.25, 0.25, 0.25] [0.25, 0.25, 0.25, 0.25]
1 [0.50, 0.50, 0, 0] [0.25, 0.25, 0.25, 0.25] A
2 [0.50, 0.50, 0, 0] [0.25, 0.25, 0.25, 0.25] wait

Examine the probabilities of each observation.

p(A |AA, β) =
p(A )β(AA)

p(A )β(AA) + p(A )β(AB) + p(A )β(BA) + p(A )β(BB)

=
0.5 ∗ 0.25

0.5 ∗ 0.25 + 0.5 ∗ 0.25 + 0 + 0

= 0.5

p( A|AA, β) =
p( A)β(AA)

p( A)β(AA) + p( A)β(AB) + p( A)β(BA) + p( A)β(BB)

=
0.5 ∗ 0.25

0.5 ∗ 0.25 + 0 + 0.5 ∗ 0.25 + 0

= 0.5

The probabilities of all other actions are 0, since we only give truthful observations.
Notice that this situation is not ideal. The agent has equal probabilities of receiving either observation, even

though the agent already knows that the first character is an A. Now, consider what would happen if the robot
chose the action A0. We would get the following belief states:

t b β a o
0 [0.25, 0.25, 0.25, 0.25] [0.25, 0.25, 0.25, 0.25]
1 [0.50, 0.50, 0, 0] [0.25, 0.25, 0.25, 0.25] A
2 [0.50, 0.50, 0, 0] [0.5, 0.5, 0, 0] A0
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If we examine the probabilities again:

p(A |AA, β) ∝ p(A )β(AA)

p(A )β(AA) + p(A )β(AB) + p(A )β(BA) + p(A )β(BB)

∝ 0.5 ∗ 0.5

0.5 ∗ 0.5 + 0.5 ∗ 0.5 + 0 + 0

∝ 0.5

=
1

3

p( A|AA, β) ∝ p( A)β(AA)

p( A)β(AA) + p( A)β(AB) + p( A)β(BA) + p( A)β(BB)

∝ 0.5 ∗ 0.5

0.5 ∗ 0.5 + 0 + 0 + 0

∝ 1

=
2

3

Now, we are more likely to get the observation A, which is more useful to us than the observation A , since it
gives us the information we need to pick the correct object, AA. This provides an incentive for the robot to choose
an action that conveys something about its current state of belief over doing nothing.

7.2 Reverse Observation Functions

We define a reverse observation function for each action the robot can take. These define how β is updated when
a robot takes an action.

For look(x) actions, we define an angle φl to be the angle between a vector from the robot’s face to the location
x and the vector from the robot’s face to the location of object ιt+1. We assume this angle is chosen from a normal
distribution centered at 0 with a hand tuned variance, vl.

p(at = look(x)|ιt+1) = N (φl|0, vl)

For point(x) actions, we define an angle φp to be the angle between the vector from Baxter’s wrist to location x
and the vector from Baxter’s wrist joint to the object ιt+1. This gesture is chosen according to a normal distribution
with hand-tuned variance vp.

p(at = point(x)|ιt+1) = N (φp|0, vp)

Actions say(p) take the form of a statement “I believe that the object you want is p”, where p is some property
from some object’s vocabulary. The probability of this action given some ι is identical to the speech model for the
human, given in section 3.3.1.
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