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Abstract—A photograph taken by a conventional camera
captures the average intensity of light at each pixel, discarding
information about the angle from which that light approached.
Light field cameras retain angular information about the rays
they collect, allowing re-integration of rays during post process-
ing. Consumer light field cameras have small apertures, and
laboratory camera arrays with large baselines are expensive
and not portable. In this paper we demonstrate time-lapse
light field photography with the eye-in-hand camera of the
Baxter robot. Using the eye-in-hand we can collect light densely
and precisely over large distances. The collected rays can be
refocused in software with varying lens and aperture properties
to form conventional 2D photographs. This refocusing allows us
to perform 3D reconstruction and segmentation and suggests
approaches for enabling existing computer vision algorithms
to robustly handle optically active surfaces. The techniques in
this paper can contribute to robotic visual systems for object
manipulation as well as media collection systems for virtual
reality devices.

I. INTRODUCTION

Robots move themselves in the world and to be supremely
useful to us they should be able to move other objects around
in the world as well. In order to move those objects, the robot
must be able to perceive them. IR based depth cameras are
impressively capable but suffer from calibration difficulties
which make precise alignment of RGB and D fields difficult.
Additionally, IR based depth cameras are not well suited
for large scale or outdoor use due to interference from each
other and the sun. In many settings we would like robots to
work under the same constraints and assumptions that we do.
Therefore it would be convenient if a robot could perform all
of its duties with an optically passive RGB sensor.

Computer vision has become more accessible in recent
years. Nonetheless, a fixed camera can be fooled and if it
is fooled it cannot recover. If a camera can move and collect
additional views at inference time, many more options are
available for the solution of any given problem. The more
degrees of freedom a camera has, the more views and the more
options. But what is the right way to make use of all of these
views? We suggest that light field photography, or plenoptic
photography, provides natural and powerful avenues of infer-
ence for object classification, segmentation, localization, and
manipulation using 3D reconstruction and 2D computational
photography.

Robots with 7 DoF arms are becoming standardized and
less expensive. Eye-in-hand layouts with a camera next to the
end effector can facilitate visual servoing and other activities.
Baxter has two 7 DoF arms each with an eye in hand.
Furthermore, the encoders in Baxter provide pose annotation
in position and orientation for the end effector that is accurate
enough to enable metrically calibrated light field photography

Fig. 1: When collecting images at many locations parallel
to a target plane, each pixel in a single image describes
light approaching the camera from a unique angle. The light
emanating from a single point in space is captured in different
pixels across different images.

if images of a stationary target can be collected over time.
Time lapse light field photography has precedent [9] , but the
movement is typically constrained to a few dimensions. Fixed
camera [8] and microlens [3] arrays are stable once calibrated
and can capture angular information from many directions
simultaneously, but camera arrays are not very portable and
microlens arrays do not have a very large baseline. Baxter’s
arm allows us to densely collect images (in sub millimeter
proximity to each other) across large scales ( about a meter
) over 6 DoF of pose in a 3D volume 5 4. This enables the
study of light fields in a diverse variety of modes on an widely
available piece of equipment (Baxter), and to our knowledge
may be the most flexible and accessible apparatus for light
field research despite the limits ultimately imposed by joint
encoder quantization and a relatively inexpensive camera.

II. OUR SOFTWARE CAMERA

An everyday photograph describes the mean intensity of the
light hitting each of its pixels. Light field photography retains
not only intensity information but also information about the
angle from which light approaches in an image. A light field
captures phenomena such as parallax, specular reflections, and
refraction by scene elements to a much better degree than a
single photograph. There are many ways to record a light field.
We start by collecting images while moving the camera in a
plane and recording the camera location for each image.

When collecting images at many locations parallel to the
target image plane, each pixel in a single image describes



Fig. 2: In order to accurately focus rays in software, we must be able to determine the global (x, y, z) coordinate of the origin
point of a ray given the camera pose, an origin depth, and the pixel coordinate (i, j) of that ray. Our transformation from pixel
coordinates to world coordinates depends upon knowing the projection of the end effector into the image plane at four heights.
We can obtain these values automatically by aiming the camera at a textured surface and spinning the end effector. The point
under the gripper remains fixed while the other points move in a circle. Left: Our calibration target, a superposition of three
plane waves, as viewed from the wrist camera. The black “X” is where the end effector would touch down on the paper at
its axis if it moved toward the image plane. Middle: A time lapse averaged image of the calibration target viewed through the
wrist camera as the end effector spins about its axis. This “smearing” average is useful for finding fixed points under camera
motions. The projection of the end effector into the image plane is clearly visible as a blue dot. Right: The variance of the
colors which contributed to the time lapse average. Darker is lower variance. The projection of the end effector is fixed in the
image during the spin, so it has the lowest variance.

light approaching the camera from a unique direction. The
light emanating from a single point in space is captured in
different pixels across different images. Whereas a pinhole
camera would assign precise angular information to each pixel,
real cameras have apertures of nonzero diameter. This means
that the light hitting a pixel is collected over a range of angles.
The camera we use has a very large depth of field, so most of
the image is in focus and we do not deviate too much from the
pinhole model. We can use ray casting to reproject the rays
from all the images as if they has emanated from a common
depth, thereby mimicking the action of a lens, and forming a
new refocused image with a depth of field controlled by the
area of the pixels over which we integrate. Rays which truly
originated from the same point in space at the target depth
will then be projected to the same pixel in the refocused image
and thus will form a sharp image at that point. Images can be
refocused in order to perform object segmentation, detection,
localization, manipulation, and 3D reconstruction.

The full light field in a volume describes the direction of all
light traveling through all (x, y, z) points in the volume, for six
dimensions in all. It is typical to instead consider only one z
value per (x, y) pair to form a two dimensional manifold, and
assume that rays only emanate from one side of the manifold.
This is called the 4D light field, lumigraph, or photic field. The
light slab is a common visualization of the 4D light field 3
and is similar in structure to light field photographs formed
by microlens arrays.

To understand the refocusing process, recall that images are
collected in a plane and recast down to a parallel plane at a
specified focal depth or distance or height. Imagine that there
is a projector array in space projecting each of the collected

wrist images from the camera pose down onto a screen placed
at the focal depth. The image on that screen is the refocused
image. Another way of putting it is that the refocused image
is seen as if the rays had all originated a that depth.

There is an analogy between this software camera and a
physical camera. Choosing the depth at which we render
is like controlling the focus of the lens, the resolution we
render at is analogous to the zoom, and the area of pixels
in the wrist camera image over which we integrate to form
the refocused image is like the aperture. We say angular
aperture to emphasize that it controls the angle of the rays
that are collected, as viewing an object from the edge of the
wrist image elicits a side view formed by oblique rays, while
viewing the same object from the center of the wrist image
elicits a top down view whose rays are normal to the refocused
image plane. The wider the angular aperture is set, the faster
objects go out of focus as they depart from the focal plane.

Rendering nearer to the camera causes oblique rays to come
into focus, which naturally tilts the perspective out of the
image plane, showing the sides of objects whose tops face
the camera. Rendering far from the camera causes more direct
or more normal rays to come into focus, making renders of
objects more invariant to perspective. But we can choose the
ray angles to consider at any height by setting the angular
aperture accordingly. In one limiting case, we can form an
image with totally normal rays which shows a wide scene as
if it were viewed from infinity, or as if the camera had been
directly above all of the objects at once, analogous to having
a very wide lens. This dramatically simplifies object detection
and pose estimation. We can approximate such an image with
the marginal and max likelihood renders we describe next and



illustrate in 4. In the other direction, we can consider rays
over a very wide range to dramatically narrow the depth of
field, using defocus to eliminate objects from the image and
simplify many tasks 5.

A. Refocused Image Model and Calibration

In order to accurately focus rays in software, we must be
able to determine the global (x, y, z) coordinate of the origin
point of a ray given the camera pose, an origin depth, and the
pixel coordinate (i, j) of that ray. Our transformation from
pixel coordinates to world coordinates depends upon knowing
the projection of the end effector into the image plane at four
known heights as well as having an accurate measurement of
the physical distance between the camera and the end effector
in the image plane 2.

Using the pixel-to-world transform we can create a sharp
refocused image whose pixels have physical dimensions of less
than a millimeter when rendered at Baxter scale depths. While
creating the refocused image, we record not only the mean
intensity of the pixel values that contribute each refocused
pixel, but also the independent variance of the each of the three
color channels. The variance of a time lapse image captures
information about object boundaries, motion, and asymmetric
lighting, and as such is a nice one-dimensional description of
the angular content of the light field at a point. It is also a
good measure of how well focused a refocused pixel is.

During end effector projection calibration, we fix a false,
constant camera pose for reprojection to “smear” the image
over time instead of correctively aligning it. This allows us to
find fixed points in the camera image while the end effector
undergoes motions, such as spinning about its axis to find its
projection in the plane, or zooming towards and away from
the plane to find the vanishing point for that motion in the
camera image. We can estimate a gripper mask similarly by
smearing the camera over the calibration target and masking
points with low variance.

Our calibration is extremely straightforward and involves
printing some copies of our calibration pattern, placing them
haphazardly on a table in front of Baxter, and running a single
program. It is repeatable, precise, and yields a mapping which,
given a pixel in the camera and a target distance from the
camera, produces the global (x,y,z) coordinate from which
rays contributing to that pixel would originate. Accuracy is
maintained even centimeters from the camera.

We start by estimating the vanishing point and gripper
projections as described above. We then use bundle adjust-
ment to iteratively refine a depth dependent magnification
correction, which accounts for radial distortion. We iteratively
render a scene with images taken at each height and optimize
the camera model with gradient descent on an objective
which measures the software camera’s ability to focus rays
consistently across space: that is, we minimize the variance of
the refocused image. We do not use the vanishing point in the
calibration but we want rays normal to the camera plane to be
in the center of our aperture and the normal rays arrive at the
pixel that casts perpendicularly into the image plane, i.e. the
vanishing point.

B. Jointly Estimating RGB and Depth

Our depth reconstruction algorithm is only a local method
but is at its heart similar to that in [4] in that it relies on
defocus measurement.

Recall that we model the color distribution in each pixel
or cell of a refocused image with an independent Gaussian
on each color channel. A cell is more in focus when the sum
of variances across its channels is small. By sweeping focus
over a series of depths, we can assign to each cell the depth
of the render in which its variance is the smallest. This is
a maximum likelihood estimate of the depth at a point. We
can induce a maximum likelihood refocused RGB image by
assigning each pixel the color value it has in the image focused
at its maximum likelihood height.

Similarly, for a given height we can use the Gaussian at a
cell to evaluate the probability of the mean of that Gaussian.
That value is the likelihood of making the ray observations
at that cell under that Gaussian. Using this likelihood at each
height to weight an average over depths, we can evaluate the
expected value of the depth over a range to yield a marginal
estimate of the depth at a point. Likewise we can weight the
RGB estimates at each depth to form a marginal estimate of
the RGB values at each refocused pixel, yielding a marginal
refocused image.

Consider the depth maps in 4, the images of which were
taken with the camera 38 cm from the table. The top of
the mustard is 18 cm from the camera and very shiny, so
this degree of local estimation is non-trivial. The maximum
likelihood estimate was pooled over a 14×14 cell area to add
a little bit of global information. The RGB maps are metrically
calibrated images that give a top down view that appears in
focus at every depth. Such a map greatly facilitates object
detection, segmentation, and other image operations.

III. FUTURE WORK

Time lapse light field photography has exciting applications
in motion analysis and light source estimation. Learning to
tackle such problems in this new medium is bound to reveal
some amusing results. We also want to explore geometric
operations like object removal [5].

Our 3D reconstruction method is a nearly local method at
the moment. Global priors on depth maps and 3D occupancy
will improve the structural estimates [7]. The structure can in
turn further improve the photographic techniques by modeling
ray occlusion and reflectance. Processing light fields involves
large data volumes and computation times, so sparse repre-
sentations are needed to improve storage and computational
efficiencies [2].

Modern methods in computer vision are data driven. As
such there is a lot of motivation to reuse data. A standard
form for data would facilitate sharing and reuse. The standard
form should be as close to the original data, i.e. labeled
camera images, as possible, while being immediately useful
and accessible for as many applications as possible. What form
should data take on to satisfy these conditions? Converting
among image formats and managing camera profiles is diffi-
cult. Therefore we suggest that each robot be responsible for
converting its images into metrically calibrated rays. These



Fig. 3: Light slabs for the tabletop and room scenes. Each image is an array of sub images. Each sub images sorts the rays
incident to the sub image according to angle of emission. The main lens is focused on the surface of the SPAM container and
on the human subject, respectively. The reflections of the overhead lights are visible near the top of the SPAM label.

rays can be stored in a totally non-parametric format, shared,
and re-rendered in 2D and 3D formats.

We have preliminary results with a graphical model over
light fields which we can use to perform object detection,
localization, segmentation, and grasping. It would be valuable
to explore superresolution [1] techniques and see whether we
can exceed the wrist camera resolution in refocused images.

The ability to calculate light slabs makes available to us the
algorithms which use them as input. Employing Fourier optics
should yield faster refocusing operations. We have used a one-
dimensional lenticular array to view compatible light slabs in
stereo, complete with multiple types of depth cue. We look
forward to viewing light fields with other displays.

Our calibration model allows inference of camera parame-
ters from pose annotated image frames. A system equipped to
segment objects such as glass containers, windows, mirrors,
floors, counters, and other reflective surfaces can infer camera
properties given rays which interact with a target surface.
Comparing the camera values estimated on the target surface
against known free-space camera values reveals the optical
properties of the target surface and allows them to be com-
pensated for and exploited. It has already been observed that
light field cameras can help robots perceive glossy surfaces [6].

IV. CONCLUSION

In this paper we have contributed a demonstration of a
light field camera which can be implemented on a 7 DoF
robotic arm with an eye in hand 2D RGB camera. We briefly
described the algorithms necessary to calibrate the camera and
demonstrated the use of the camera and the effects of the key
parameters.

To our knowledge, before our work, Baxter and other 7
DoF arms were unable to collect and render light field data.
Furthermore, the light field capturing abilities of Baxter in
this paradigm are unique in scale, flexibility, and precision

when compared to other modalities of light field collection. We
hope that this work helps robots see better through light fields
and helps researchers learn more about light fields through
the use of robots. What makes this possible and accessible
is our automatic and theoretically intuitive calibration process
which is accurate, precise, and repeatable. Once the camera
is calibrated over depth, straightforward algorithms based on
ray casting produce consistent results. Without calibration,
developed images will be out of focus (if recognizable) and
not metrically interpretable.

The depth estimates and various rendering techniques we
demonstrated are encouraging and suggest that passive light
field sensing can make powerful contributions to object clas-
sification, localization, and manipulation. The system we im-
plemented will be available in our next software release and
demonstrates our capabilities in this domain.
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Fig. 5: A room scene. Top Left: A single image from the wrist camera. Remaining: Refocused photographs computed with
approximately 4000 wrist images and focused at 0.91, 1.11, 1.86, 3.16, and 3.36 meters.



surfaces using synthetic apertures: Stereo, focus and robust
measures. In Computer Vision and Pattern Recognition,
2006 IEEE Computer Society Conference on, volume 2,
pages 2331–2338. IEEE, 2006.

[6] Christoph Walter, Felix Penzlin, Erik Schulenburg, and
Norbert Elkmann. Enabling multi-purpose mobile manip-
ulators: Localization of glossy objects using a light-field
camera. In Emerging Technologies & Factory Automation
(ETFA), 2015 IEEE 20th Conference on, pages 1–8. IEEE,
2015.

[7] Sven Wanner and Bastian Goldluecke. Variational light
field analysis for disparity estimation and super-resolution.
Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 36(3):606–619, 2014.

[8] Jason C Yang, Matthew Everett, Chris Buehler, and
Leonard McMillan. A real-time distributed light field
camera. Rendering Techniques, 2002:77–86, 2002.

[9] Matthias Zobel. Object tracking and pose estimation using
light-field object models. 2002.


	Introduction
	Our Software Camera
	Refocused Image Model and Calibration
	Jointly Estimating RGB and Depth

	Future Work
	Conclusion

