
Planning with Abstract Markov Decision Processes

Nakul Gopalan1, Marie desJardins2, Michael L. Littman1, James MacGlashan1, Shawn Squire2, Stefanie Tellex1,
John Winder2, Lawson L.S. Wong1

1Brown University, Providence, RI 02912 2University of Maryland, Baltimore County, Baltimore, MD 21250

Abstract
Planning in large state-action spaces requires
hierarchical abstraction for efficient computa-
tion. We introduce a new hierarchical plan-
ning framework called Abstract Markov Deci-
sion Processes (AMDPs) to find efficient so-
lutions that, although possibly suboptimal, can
solve complex planning problems in a fraction
of the time needed for ordinary MDPs. AMDPs
provide abstract states, actions, and transition
dynamics in multiple layers above a base-level
“flat” MDP. AMDPs decompose problems into a
series of subtasks with both local reward and lo-
cal transition functions used to create policies for
subtasks. Because the local reward and transition
functions could be incorrect, the resulting solu-
tions may be suboptimal; however, they also pro-
vide strong heuristic guidance, greatly decreas-
ing planning time. The resulting hierarchical
planning method, while not recursively optimal,
is independently optimal at each level of abstrac-
tion, and is recursively optimal when the local
reward and transition functions are correct. We
present empirical results showing improved plan-
ning speed and equivalent solution quality, when
compared to existing methods in the well studied
Taxi domain and in a simulated mobile manipu-
lation robotics problem.

1. Introduction
When carrying out tasks in unstructured, stochastic envi-
ronments such as factory floors or kitchens, the resulting
planning problems are extremely challenging due to the
large state and action spaces (Bollini et al., 2012; Knepper
et al., 2013). Typical planning methods require the agent to
explore the state–action space at the lowest level, requiring
a combinatoric search through long sequences of actions.

A common method for dealing with the combinatorics of
such long sequences is to provide the planner with tem-
porally extended actions, encapsulating reusable segments
of the plan into a more tractable form. These extended
actions, with or without abstraction hierarchies, take the
agents closer to important subgoals. Temporally extended

(a) Two passen-
ger Taxi (b) Task hierarchy over the taxi problem

Figure 1. Abstract Markov Decision Process (AMDP) hierarchies
avoid exploring the complete hierarchical tree, by using local tran-
sition and reward functions at each level of the hierarchy. The
above figure is the task decomposition to explore a Get Passen-
ger 1 node in the Taxi problem (Dieterrich, 2000), when the pas-
senger is at the Red location. Approaches like MAXQ explore
the complete subtree of each subtask, but AMDPs explore only
the relevant branches, indicated with nodes colored blue, accord-
ing to the local transition and reward functions.

actions can be provided to the planner in the form of op-
tions (Sutton et al., 1999) or macro-actions (McGovern
et al., 1997). While extended actions can decrease plan
length and complexity, their inclusion increases the branch-
ing factor of search leading to dramatic increases in plan-
ning time (Jong, 2008).

The MAXQ model (Dieterrich, 2000), in contrast, decom-
poses a flat MDP into smaller subtasks, each specifying
a subgoal and potentially a state abstraction specific for
the subtask’s goal. MAXQ hierarchies were originally de-
signed to be model-free and were used to accelerate model-
free learning. However, they have also been used in a plan-
ning setting (Diuk et al., 2006). Planning in the MAXQ
setting requires recursive exploration of all children in the
hierarchy for value estimation of a node, which leads to
long runtimes in large problems.

We introduce the concepts of an abstract MDP (AMDP)
and an AMDP hierarchy. We define an AMDP to be a
non-primitive subtask of a MAXQ hierarchy that includes
an abstract semi-MDP transition function and reward func-
tion over the subtask’s children and where the reward func-
tion reflects the goals of the subtask. By “abstract”, we



Planning with Abstract Markov Decision Processes

mean that the model is computed, for reward and transition
functions, without having to decompose the effects of its
children, unlike a semi-MDP (SMDP) formulation (Sutton
et al., 1999). We refer to a subtask with such an abstract
model as an AMDP, because its states and actions consist
of elements of a lower level MDP. An AMDP subtask in-
cludes a set of states abstracted from the underlying MDP’s
state space, a set of “actions” consisting of the subtask’s
children, a transition function mapping from these actions
to probabilities of next state outcomes, and a reward func-
tion defining the goal of the subtask. An AMDP hierarchy,
then, is a MAXQ task hierarchy whose subtasks are either
AMDPs or primitive nodes. For example consider the Taxi
problem shown in Figure 1a, a subtask to Get Passen-
ger 1 has a set of states where the passenger is present in
different locations, but the physical locations of the taxi or
passengers are abstracted. Similarly the action of Nav(R)
navigates the taxi to location Red in the abstract state in a
single abstract MDP step, with deterministic transitions (in
this case) defined for the subtask. The local reward function
gives a goal reward of one when the passenger is picked. As
we go higher up in an AMDP hierarchy the states abstract
away more of the physical state and have actions that are
temporally longer on ground level.

Because an AMDP has a transition and reward function,
its policy can be determined using planning approaches for
flat MDPs such as value iteration. The concept of using
a subtask model for computing a policy has been used in
previous work, such as R-MAXQ (Jong & Stone, 2008)—
a model-based learning algorithm for MAXQ. However,
in that work, the transition and reward function violated
our model-abstraction requirement: the effects of a sub-
task’s child was computed recursively, requiring planning
for each child and descendant for each state visited in the
subtask. The position we advocate in this work is that ab-
stract models provide large savings in planning time by
avoiding to plan for subtasks that are not selected. To illus-
trate this effect, consider Figure 1b, which shows a plan-
ning search tree for a Get Passenger 1 subtask in a multi-
passenger version of the Taxi domain (Dieterrich, 2000).
The blue nodes represent the state–action planning expan-
sion performed when using an abstract model: the abstract
transition model considers the effects of the pickup and
navigate subtasks, which results in it selecting Nav(R). For
that state, the AMDP planning only expands the Nav(R)
subtask. In contrast, when recursive planning is carried
out, as in MAXQ or R-MAXQ, all the nodes, both blue
and white, need to be expanded to determine their effects.
By avoiding deep expansion, AMDPs unlock the computa-
tional savings possible through hierarchical abstraction.

AMDPs also afford the opportunity to apply specialized
planners for each subtask to further accelerate learning. For
example, algorithms like bounded real time dynamic pro-

gramming (BRTDP) (McMahan et al., 2005) with subtask-
specific heuristics can be used to accelerate planning. It
may also be possible to learn heuristics from previous expe-
riences more easily over a variety of tasks, since heuristics
can be bound to each relevant subtask and reused.

The work we present here is preliminary—our goal is to
foster more discussion on the topic. Specifically, our re-
sults show that AMDPs use less planning time than base
level planners and options to complete tasks in the Taxi and
Cleanup World (MacGlashan et al., 2015) domains.

2. Related Work
An MDP (Bellman, 1957) is defined by a five-tuple (S ,
A, T , R, E), where S is the agent’s state space; A is
the agent’s action space; T (s, a, s′) is a function defining
the transition dynamics (i.e., the probability that a transi-
tion to state s′ will occur after taking action a in state s);
R(s, a, s′) is the reward function, which returns the reward
that the agent receives for transitioning to state s′ after tak-
ing action a in state s; and E ⊂ S is a set of terminal
states that, once reached, prevent any future action. The
goal of planning in an MDP is to find a policy—a mapping
from states to actions—that maximizes the expected future
discounted reward. Reasoning about large state and action
spaces in the context of a standard MDP is hard, and hier-
archical methods have been known to help speed up plan-
ning in these large domains (Sutton et al., 1999; Dieterrich,
2000).

Since hierarchical planners do not reason at the flat level,
they do not maximize the expected future reward at the base
level for a globally optimal plan. Dieterrich (2000) distin-
guishes between optimality at the base level, with several
notions of optimality that are constrained by the hierar-
chy. A hierarchically optimal policy is one that achieves
the maximum reward at the base level subject to the con-
straint that actions are consistent with the given hierarchical
structure. In contrast, recursive optimality policy is defined
as a hierarchically policy such that each subtask’s corre-
sponding policy is optimal for the SMDP defined by its set
of states, actions, transition probabilities as defined multi-
time step SMDP model (Sutton et al., 1999), and a rewards
according to the original reward function.

3. Abstract Markov Decision Processes
AMDPs capture higher-level transition dynamics that serve
as an abstraction of a lower level (A)MDP domain. Each
AMDP directly abstracts either a single lower-level AMDP
or the source MDP, inducing an AMDP hierarchy with a
stack of (A)MDPs.1 In effect, an AMDP defines a deci-

1This concept could be extended to build a DAG of MDPs.



Planning with Abstract Markov Decision Processes

sion problem over subgoals for its lower-level (A)MDP,
using AMDP “actions”. These actions also allow transi-
tions between higher-level states of AMDPs. Planning in
an AMDP can be orders of magnitude faster than plan-
ning in the lower-level MDP space because they do not
require values to be backed up from all low-level MDP
states. Instead, we only perform MDP-style planning at the
abstracted level, where the state and action spaces are po-
tentially much smaller. For this abstracted MDP planning,
we require additionally, as input at each level, abstract tran-
sition and reward functions, and a state projection function
to map ground states to abstract MDP states, all of which
are engineered for this work. However, plans in AMDP
space are specified in terms of abstract actions or subgoals
that must be grounded in policies in the lower-level space
to be carried out. We describe our approach to efficiently
grounding abstract actions in Section 3.1.

We define an AMDP domain as a complete MDP domain in
itself (state space, set of actions, transition dynamics, and
terminal states) with the addition of a state-projection func-
tion F and a set of goal conditions G that are associated
with each action. Given an MDP M , we define an AMDP
domain M̃ based on M by adding a state projection func-
tion F and a set of goal conditions G that are associated
with each action. The state-projection function maps states
from the source MDP state space into the AMDP state
space. That is, M̃ includes the state projection function
F : S → S̃, where S and S̃ are state spaces of M and M̃ .
For example in the Taxi problem, an higher level abstract
state might remove the Cartesian coordinates of the taxi,
passenger and locations; and maintain relative attributes.
For example the taxi can be at a location like Red or in
transit between locations indicated by On Road. The goal
conditions G in the AMDP specify the intended outcomes
and termination conditions for the subtasks associated with
each action. A goal condition for the AMDP action at level
l in the hierarchy ã (Gã) has two components: (1) a reward
function GR

ã , which maps from states in the (A)MDP at
level l − 1 to a reward value,2 and (2) GE

ã ⊂ S, a set of
terminal states in the (A)MDP at level l − 1. The reward
function for the (A)MDP at l−1 is zero cost for taking each
action until the terminal condition is reached for a reward
of one. The transition function for AMDP action ã at level
l is simply probability 1 of reaching an abstract state in S̃
where the goal condition for the AMDP action is satisfied
in the (A)MDP at level l − 1. The AMDP at the high-
est level uses similar termination conditions for its abstract
states derived from the set of goal states in the flat MDP.
Consider the level 1 action Nav(Red) action to navigate
the taxi to the Red location. The goal condition at level
0 is for taxi to be present in the Red location at the base

2More generally, the reward function may also be defined as
depending on the previous state, action, and next state.

level. This goal condition defines the set of terminal next
states with reward 1, otherwise the reward is 0 elsewhere.
The transition probability at level 1 is 1.0 for the taxi to be
at location Red with the rest of the state unchanged and 0
for other states.

When planning, actions in an AMDP are chosen to be op-
timal with respect to its level of abstraction, given any goal
conditions from the level above. The optimality within
each level of abstraction is strictly weaker than recursively
optimality, as we are not querying the reward function of
the flat MDP while planning. Given an SMDP based multi
time-step transition function and sum of rewards over the
original reward function, AMDP policies become recur-
sively optimal by definition (Dieterrich, 2000). However,
computing SMDP based transition and reward functions
lead to longer planning times. Recursive methods for learn-
ing transition functions have been applied in the context
of R-MAXQ (Jong & Stone, 2008). However, we believe
algorithms in the AMDP setting can learn these transition
functions without the expense of recursion to the base level.
.
3.1. Planning in AMDPs

Algorithm 1 AMDP Solving and Execution

function SOLVE(s, G)
s0 ← s
SOLVE-HELPER(G, 0)

end function
function SOLVE-HELPER(G, i)

if i<max layer then . project states to highest AMDP
si+1 ← PROJECT(si, i+ 1)
SOLVE-HELPER(G, i+ 1)

else . ground actions from highest AMDP
GROUND(G, i)

end if
end function
function GROUND(G, i)

π ← PLAN(si, G, i)
while si /∈ GE do . execute until local goal satisfied

a← π(si)
if i > 0 then . give goal conditions to level below

GROUND(a, i− 1)
else . execute actions in environment

si ← EXECUTE(a)
end if

end while
si+1 ← PROJECT(si, i+ 1)

end function

Given a corresponding source MDP, an initial state in it,
and an AMDP hierarchy, a computationally demanding
”flat” planning problem can be simplified by using an on-
line planning algorithm that first computes a high-level



Planning with Abstract Markov Decision Processes

AMDP policy and then reduces each selected action in
the AMDP policy into a separate planning problem in the
lower-level source MDP.

Planning and execution of AMDPs operates on multiple hi-
erarchical levels of abstraction. First, the initial AMDP
state is determined at the highest layer of abstraction by
recursively applying each layer’s state-projection function
from the lowest-level MDP up. Second, a downward-
recursive grounding procedure, consisting of planning and
execution, is initiated from the top layer for the global goal.
In the planning step, a policy for the goal condition rooted
in the current abstract state is computed. In the execution
step, the computed policy is followed until a terminal ab-
stract state is reached. A policy is followed by selecting and
executing actions until a terminal abstract state is reached.
An AMDP action is executed by calling the grounding pro-
cedure on the layer below with the goal conditions of the
AMDP action. At the completion of a grounding proce-
dure, it projects its exiting state to the above layer. The
complete pseudocode is shown in Algorithm 1.

AMDP planning can be substantially faster than previous
hierarchical planners for two reasons. First, the AMDP
planners do not need recursively compute the values, tran-
sitions and rewards at each node, unlike previous methods.
Second, structured subgoals at individual levels often have
extremely efficient algorithms. For example, in the Taxi
problem, the navigation subgoals enable A* to be used with
a goal based Euclidean distance heuristic for the navigation
subtask. MAXQ based methods do not offer modularity on
the choice of such algorithms at each level.

3.2. Example AMDP Hierarchies

To provide examples of a source MDPs and AMDP hier-
archies, we present results for the cleanup domain (Mac-
Glashan et al., 2015) and taxi domain (Dieterrich, 2000).
We use the object-oriented MDP (OO-MDP) formalism to
express all these problems (Diuk et al., 2008).

3.2.1. TWO PASSENGER TAXI

We now consider in detail AMDPs for the Taxi problem
with two passengers with their own individual destinations
instead of a single passenger. We consider the two passen-
ger case because with two passengers differences between
the notions of recursively optimal and hierarchical optimal
are clear by the order in which the passengers are picked
and dropped. We created AMDP analogs for the hierarchi-
cal structure used in the original MAXQ problem (Dieter-
rich, 2000). In the flat MDP, at level 0 of the hierarchy,
there are six actions: north, south, east, west, pickup pas-
senger, drop passenger. The state at the flat MDP consists
of passengers, taxi and locations, with attributes of their
physical locations in the grid. Locations and passengers

also have color as an additional attribute while the taxi has
an attribute pointing to a current passenger, if any. At level
1 of the hierarchy, the abstract actions are: Pickup, which
moves a passenger into the taxi if they are at the same loca-
tion; Putdown, which drops a passenger off at the current
location; and, Nav(i), which drives the taxi to location i.
The state for this AMDP abstracts away the physical loca-
tion of passengers, taxi and the locations. The goal condi-
tion for the Nav(Red) AMDP action is a reward function
that returns zero cost for actions until the taxi is at location
Red, where the reward is 1; and a set of terminal states in
which the taxi is at the location Red with the rest of the
state unchanged. At level 2 of the AMDP stack, the ac-
tions are: Get Passenger(i) that puts passenger i into the
taxi, and Put Passenger(i) that grounds to dropping pas-
senger i to its destination. The states abstract away that the
taxi and passengers have attributes pointing to their current
locations. Hence, the subtask hierarchy of MAXQ is simi-
lar to AMDPs, however the task decomposition is local in
its reward functions, transition function and value function
or planning computations. This local task decomposition
gives AMDPs savings in planning times.

3.2.2. CLEANUP WORLD

Our second evaluation domain is Cleanup World (Mac-
Glashan et al., 2015), representing a mobile-manipulator
robot as shown in Figure 3a. Cleanup domain is a good
test bed for planning algorithms as its state space ex-
plodes combinatorially with objects and rooms like real life
robotics planning problems. The robot can have a variety of
goals, such as moving the chair to the red room and moving
all objects to the blue room. Abstract actions include the
robot moving to a door connected to the room in which the
robot currently resides, from a door to a connected room,
to an object currently in the same room (or doorway) as the
robot, taking an object to which the robot is adjacent to a
door, and taking an object from a door to a connected room.
The source MDP goal conditions for each of these AMDP
actions can be defined based on the action arguments. For
example, the goal condition for the MoveToDoor AMDP
action is a reward function that returns zero everywhere ex-
cept when the agent is at the specified doorway, in which
case it returns a reward of one; and the terminal states are
all states in which the robot is in the doorway.

The abstract actions define a corresponding state represen-
tation that abstracts away the spatial information from the
source OO-MDP. Such a representation retains the same
objects as the source OO-MDP, but represent position at-
tribute information and the room–door topology relation-
ally instead of spatially. Specifically, the robot and house-
hold objects have an attribute that points to the door/room
in which they reside; the robot has an attribute that points
to household objects to which it is adjacent; and the room



Planning with Abstract Markov Decision Processes

points to connected doors (and vice versa). Projecting
states from the source MDP into this AMDP is done by
finding the room/door the robot or an object resides us-
ing comparisons of the position and region boundary at-
tributes. Similarly, it is trivial to determine which doors are
connected to which rooms by testing whether a room and
door’s rectangular regions intersect. A third-level AMDP
with even higher-level actions, such as taking any given
object to any given room, can also be introduced. The cor-
responding high-level state space for this AMDP abstracts
away the room-door topology.

4. Results
We compared AMDP planning performance against a flat
planner and options in Taxi and Cleanup World. For
Cleanup World, we only have preliminary options results
because of long run times. We used options in two ways:
(1) options as used commonly, allowing base-level actions
to be also chosen from each state; (2) exclusively options,
where we use options without base-level actions for plan-
ning. We expected that using options exclusively would
speeds up planning, since the planner has a lower action
branching factor. For each method, we generated plans
using BRTDP (McMahan et al., 2005), which has perfor-
mance guarantees in large domains. We compared different
abstraction methods over two metrics: (1) Bellman updates
or backups needed for effective planning; (2) steps taken to
complete the task, given a budget of Bellman updates.

4.1. Taxi Domain

For the two-passenger taxi domain, we handcrafted an
AMDP hierarchy, as mentioned in Section 3.2.1. The do-
main is deterministic in its transitions, but a stochastic tran-
sition function would not change the result trends. The
base-level planner is BRTDP. The options provided are the
same as the actions of the AMDP at level 1 (Pickup, Put-
down, Nav(i)). The option-selection plan is derived by
BRTDP, given initiation conditions and termination condi-
tions similar to AMDPs. We ran each approach 1000 times
to compute averages and completion rates, as shown in Fig-
ure 2. We counted a task as completed if it finished within
100 actions. Data points with low completion rates may
have wide confidence intervals, but all methods found con-
sistent plans with more backups.

AMDPs have a 100% completion rate at 16, 000 back-
ups. The next fastest approach is options used exclusively,
which is an order of magnitude slower. In two-passenger
taxi, the order in which passengers are picked up and
dropped off changes the number of actions required from
19 to 30, where 19 is optimal. Options find an optimal path
of 19 steps, because they query the flat MDP reward func-
tion to calculate the expected values of the options from

(a) Percentage of completion given a backup budget.

(b) Number of steps needed deliver both passengers.

Figure 2. Taxi domain using AMDPs, base level planning, and
Options. AMDPs have almost a 100% completion rates from
8000 backups; options used exclusively need an order of mag-
nitude more backups for similar completion rates.

states. AMDPs, being optimal only at every level of ab-
straction, cannot model a difference between dropping one
passenger first vs. the other, and take about 24.5 actions to
complete the task. The base-level planner and options with
base actions take about 128, 000 and 350, 000 backups, re-
spectively, to converge to 100% completions rates.

4.2. Cleanup World

We constructed a 4-room Cleanup World problem, and
used AMDPs to solve them with the hierarchy mentioned
in Section 3.2.2. The state space of the 4-room Cleanup
World problem has more than 900 million states. A task is
considered completed if the agent is able to solve it within
250 steps. The optimal number of steps for this problem is
about 53 steps. AMDPs solve the task with a 100% com-
pletion rate with about 160, 000 backups. Even with 2.5
million backups, the base-level planner completes the task
only about 87.5% of the time. Over 1000 runs, the aver-
age length of paths computed by AMDPs is about 70, and
when the base level planners converge, they produce paths
that are on average 53 steps long. Our preliminary results
on options (based on AMDP level 1 actions) with 100 tri-
als show a lower completion rate than the base-level plan-
ner, with 2.5 million backups when options are used exclu-
sively. Options with base-level actions have an even lower
completion rate, with 2.5 million backups. We noticed that
options are spending many of these backups exploring ac-
tions that are not needed to complete the goal. Hence, we
can confidently say that AMDPs obtain much better plan-
ning performance on the large Cleanup World domain.



Planning with Abstract Markov Decision Processes

(a) Cleanup world (b) Percentage of completion given a backup budget. (c) Average steps to move an object to a goal room.
Figure 3. Cleanup domain using AMDPs, base level planning. AMDPs have almost a 100% completion rates from 160, 000 backups.

5. Discussion
We notice that AMDP planning is orders of magnitude
faster than planning at the ground level or options. We
believe that hierarchical planning methods such as options
and MAXQ would fail to plan in large domains because of
the time spent on recursively decomposing the value func-
tions to the base level. Hence, even though MAXQ and op-
tions provide a strong theoretical guarantees of being recur-
sively (Dieterrich, 2000) and hierarchically optimal (Sut-
ton et al., 1999), their time to plan might be too long for
actual agents to act in the world. AMDPs, on the other
hand, provide a weaker notion of optimality at every ab-
stract level, allow faster planning in large domains. More-
over, the AMDP hierarchical structure without the SMDP
transition function calculation allows us to be invariant to
the small changes in stochasticity at the flat level. This gen-
eralization has useful applications in robotics, when we do
not have accurate models for the base-level transitions.

We have many goals to achieve before we can fully real-
ize the potential of AMDPs. First, we need planning time
comparisons to the MAXQ algorithm given AMDP’s lo-
cal reward and transition functions. Secondly, we believe
that AMDP transition dynamics can be learned with model
learning methods without recursion to the base level, lead-
ing to a faster model-based approach to MAXQ reinforce-
ment learning. Further, we want to learn the AMDP hierar-
chies and their state abstractions automatically from data.

6. Conclusion
We introduced a novel planning method based on Abstract
Markov Decision Processes (AMDPs). An AMDP hierar-
chy decomposes a planning problem into subtasks that have
local reward and transition functions. Conventional hier-
archical planning is slow because of their recursive value
function decomposition. We demonstrated with Taxi and
Cleanup World domains that AMDPs trade order of mag-
nitude faster planning time for suboptimal solutions. We
believe this planning speedup is crucial for planing in large
domains like robotics and games like Minecraft.

Acknowledgments
This material is based upon work supported by the Na-
tional Science Foundation under Grant No. IIS -1426452,
and by DARPA under grants W911NF-15-1-0503 and
D15AP00102.

References
Bellman, R. A Markovian decision process. Technical report,

DTIC Document, 1957.

Bollini, M., Tellex, S., Thompson, T., Roy, N., and Rus, D. In-
terpreting and executing recipes with a cooking robot. In Pro-
ceedings of ISER, 2012.

Dieterrich, T.G. Hierarchical reinforcement learning with the
MAXQ value function decomposition. JAIR, 13:227–303,
2000.

Diuk, C., Littman, M.L., and Strehl, A.L. A hierarchical approach
to efficient reinforcement learning in deterministic domains. In
AAMAS, 2006.

Diuk, C., Cohen, A., and Littman, M.L. An object-oriented repre-
sentation for efficient reinforcement learning. In ICML, 2008.

Jong, N.K. The utility of temporal abstraction in reinforcement
learning. In AAMAS, 2008.

Jong, N.K. and Stone, P. Hierarchical model-based reinforcement
learning: R-max+ MAXQ. In ICML, 2008.

Knepper, R.A., Tellex, S., Li, A., Roy, N., and Rus, D. Single
assembly robot in search of human partner: Versatile grounded
language generation. In Proceedings of the HRI 2013 Work-
shop on Collaborative Manipulation, 2013.

MacGlashan, J., Babes-Vroman, M., desJardins, M., Littman,
M., Muresan, S., Squire, S., Tellex, S., Arumugam, D., and
Yang, L. Grounding english commands to reward functions. In
Robotics: Science and Systems, 2015.

McGovern, Amy, Sutton, Richard S, and Fagg, Andrew H. Roles
of macro-actions in accelerating reinforcement learning. Grace
Hopper celebration of women in computing, 1317, 1997.

McMahan, H.B., Likhachev, M., and Gordon, G.J. Bounded
real-time dynamic programming: RTDP with monotone upper
bounds and performance guarantees. In ICML, 2005.

Sutton, R.S., Precup, D., and Singh, S. Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement
learning. Artificial Intelligence, 112(1):181–211, 1999.


