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Abstract

Massive state spaces are ubiquitous throughout planning and
reinforcement learning (RL) domains: agents involved in fur-
niture assembly, cooking automation and backgammon must
grapple with problem formalisms that are much too expan-
sive to solve by conventional tabular approaches. Mod-
ern tabular planning and RL techniques bypass this diffi-
culty by using propositional functions to transfer knowledge
across states – both within and across problem instances
– to solve for near optimal behaviors in very large state
spaces. We present a means by which useful propositional
functions can be inferred from observations of transition dy-
namics. Our approach is based upon distilling salient rela-
tional values between pairs of objects. We then use these
learned propositional functions to free the RL algorithm de-
terministic object-oriented RMAX (DOORMAX) of its de-
pendence on expert-provided propositional functions. We
also empirically demonstrate high correspondence between
these learned propositional functions and expert-provided
propositional functions. Our novel DOORMAX algorithm
performs at a level near that of classic DOORMAX.

1 Introduction
Planning and reinforcement learning (RL) problems are rid-
dled with large stochastic state spaces (Knepper et al. 2013;
Bollini et al. 2013; Abel et al. 2015). For instance, the
state space of a robotic pick-and-place task increases ex-
ponentially with the number of objects to be manipulated.
Thus, even a task with few objects is characterized by an
extremely large state space that is rendered stochastic by
noisy robotic control. Similarly, a robot engaged in a cook-
ing task can configure the layout of its ingredients in numer-
ous ways with some failure probability, and so it too must
grapple with a large stochastic state space (Abel et al. 2015;
Bollini et al. 2013). There is, then, a need for methods that
expediently solve planning problems with large stochastic
state spaces.

Traditional tabular planning and RL methods – those that
compute over every state in the state space – are ill-equipped
to deal with such state spaces; large stochastic state spaces
are often mired by irrelevant subspaces into which tabular
planners needlessly sink computation. Often so much com-
putation is wasted that the problem becomes prohibitively
difficult for tabular planners (Abel et al. 2015).

More recent planning and RL approaches such as de-
terministic object-oriented RMAX (DOORMAX) (Diuk,
Cohen, and Littman 2008), linear function approximation
methods for value functions (Geramifard et al. 2013b) and
goal-based action priors (Abel et al. 2015) perform state-to-
state knowledge transfer by exploiting propositional func-
tions. These methods leverage propositional functions to
quantify the similarity of states and then transfer prob-
lem knowledge as appropriate. There also exist methods
by which initial propositional functions are compounded
into new propositional functions (Geramifard et al. 2013a).
Thus, propositional functions are of critical importance in a
number of planning and RL techniques for large state spaces.

To address the need for useful propositional functions in
planning and RL problems, we derive a means of inferring
propositional functions in a planning or RL setting. These
propositional functions are derived by formulating predic-
tions of transition dynamics in an object-oriented Markov
Decision process (OO-MDP). Our predictions are based
upon minimal relations between objects in the OO-MDP.

We begin with an explanation of OO-MDPs and the form
of our predictions in Section 2. Section 3 details our algo-
rithm, which consists of a relational featurization of an OO-
MDP, creation of labeled datasets based on observations of
transition dynamics, and conversion of these labeled datasets
into propositional functions. We also leverage our meth-
ods to derive a novel version of DOORMAX that requires
no propositional functions in Section 3.4. Section 4 de-
tails our experimental results in which we confirm alignment
between learned propositional functions and those proposi-
tional functions normally specified by an expert. Also in
Section 4, we demonstrate that our novel version of DOOR-
MAX performs nearly as well as classic DOORMAX in
terms of reward maximization over time but with substan-
tially less expert knowledge required.

2 Background

We begin by explaining OO-MDPs, as well as vocabulary
and OO-MDP-related data structures, that we use through-
out this work. Note that much of our vernacular is a contin-
uation of that used by Diuk, Cohen, and Littman.



2.1 OO-MDPs
Planning and RL problems are typically formalized as
Markov Decision Processes (MDPs). An MDP is a five-
tuple: 〈S,A, T ,R, γ〉: S is a state space; A is an action
set; T denotes T (s′ | s, a), the probability of an agent ap-
plying action a ∈ A in state s ∈ S and arriving in s′ ∈ S;
R(s) denotes the reward received by the agent arriving in
state s; γ ∈ [0, 1] is a discount factor that defines how much
the agent prefers immediate rewards over future rewards.

One of the notable shortcomings of tabular representa-
tions of MDPs is the lack of opportunities for knowledge
transfer; every state is related to other states by the machin-
ery of the MDP only in so far as one state might transition
to the other given some action or series of actions. Conse-
quently, the classic MDP cannot accommodate transfer of
knowledge across similar states. Unlike the MDP, the OO-
MDP (Diuk, Cohen, and Littman 2008) allows transfer of
knowledge across similar states. It does so by exploiting the
object-oriented structure of many planning and RL problems
to create propositional functions.

Formally, an OO-MDP is identical to an MDP except in
the added mechanisms it provides for state representation
and propositional functions.

An OO-MDP defines a set of c object classes, C =
{C1, . . . , Cc}. Each Ci ∈ C has a set of attributes,
Att(Ci) = {Ci.a1, . . . , Ci.aa}. Each attribute aj for each
object class Ci has some domain, DomCi(aj), that defines
the values that aj can adopt. A single state in an OO-
MDP consists of o instantiations of object classes, O =
{o1 . . . , oo}, wherein each instantiation is an assignment to
the attributes of the instantiated object class; that is, the OO-
MDP state s = ∪oi=1oi.

This state refactorization, in turn, allows one to define a
space of highly generalized propositional functions, P , that
act on collections of objects and therefore OO-MDP states.
That is, p ∈ P : s ∈ S → {true, false}. These propositional
functions are added to the OO-MDP and provide planners
with a means of identifying similar states and transferring
knowledge accordingly. As in an MDP, the goal of an agent
in an OO-MDP is maximization of discounted reward.

Thus an OO-MDP is a seven-tuple: 〈S,A, T ,R, γ,O,P〉
where s ∈ S is notable for its object-oriented representation
using O, and P defines propositional functions, which pro-
vide planners with a means of relating similar states.

For example, the OO-MDP formalization of a grid world
problem is the same as the MDP formalization except it
defines object classes and propositional functions and uses
these to define its state space:
O: { agent, wall }, Att(agent) = Att(wall) =

{xLocation, yLocation}, Dom(xLocation) =
Dom(yLocation) = [0, d) ∈ Z+ where d is the di-
mension of the square grid world.
P: wallToNorth, wallToSouth, wallToEast, wallToWest.

Each propositional function is true iff there is a wall in the
appropriate cell adjacent to the agent.
S: s ∈ S is a set of collections of objects. The collec-

tion of objects consists of one instantiation of an agent and
some number of walls where the xLocation and yLocation

of the agent are free to vary over their domain for differ-
ent states but the xLocation and yLocation of the walls stay
fixed across states.

Note that the OO-MDP representation of grid world al-
lows for a quantification of similar states unavailable to the
MDP representation: for instance, states in which the agent
is surrounded by walls on all sides but the north are identical
as per the propositional functions defined by the OO-MDP
representation of grid world.

2.2 Vocabulary and Data Structures
OO-MDP domain: In keeping with the vocabulary of Abel
et al. (2015), OO-MDPs in a single domain share all aspects
of the OO-MDP seven-tuple except for a state space S. The
propositional functions that we learn are applicable across
the domain in which they are learned.

Effects: An effect is defined by a type, an attribute, an
object class and a real number. The type of the effect dictates
how the effect changes the attribute of the object class. The
two types that we examine are assignment and arithmetic
effects: assignment effects set attributes of the effect’s object
class to a fixed value and arithmetic effects add a value to
the attribute of the object class of the effect. We let Y =
{arithmetic, assignment} denote the set of effects used.
The real number indicates what value is added (arithmetic
effects) or assigned (assignment effects).

We let our space of effects be noted E = (Y ×
∪O∈OAtt(O)×O × R)

Effects are a means of hypothesizing how actions affect
attributes of one object class. For this reason effects are
treated as functions that input states in S and output states
in S. That is, effect e ∈ E : S → S .

Given a particular object class oClass, attribute att and
states s and s′, we let effoClass,att(s, s

′) : (S × S) →
(effects ⊆ E) return all effects that capture how oClass’s
att changes from s to s′ for all effect types in Y .

Contradictory effects: Two effects are said to be contra-
dictory for a particular state s ∈ S if they both act on the
same attribute and object class but they would cause differ-
ent values to be assigned to the attribute of the object class
if applied in state s. That is, two effects, e1 and e2, are in-
compatible for state s iff e1(s) 6= e2(s).

Predictions: Predictions are uniquely defined by an ac-
tion and an effect. They are the unit of our algorithm that
summarizes how an action changes the state of the problem.
More formally, predictions are a tuple of an action and an
effect: pred ∈ (A× E).

Related Predictions: We define the set of predictions re-
lated to pred ∈ (A×E) to be those predictions that have the
same action as pred and an effect with the same type, object
class and attribute as pred.

3 Technical Approach
Our approach has three parts. First, we perform a gener-
alized state featurization that is likely to inform transition
dynamics. Next, we produce supervised learning datasets
with this state featurization from an RL agent’s observa-
tions. Last, we transform these datasets into propositional
functions by building classifiers on the datasets.



3.1 Featurizing without Propositional Functions
We seek a state featurization that is likely to inform tran-
sition dynamics. Transition dynamics in most domains are
determined by the relative differences of values of object at-
tributes. For instance, an agent in grid world fails to move
north because its y location is 1 less than a wall’s y location.
Moreover, transition dynamics are not just determined by
relative differences but they are determined by minimal rela-
tive differences. For instance, the agent in grid world cannot
go north because the closest wall directly north of the agent
has a y position 1 greater than the y position of the agent.
We would like to produce functions that act on states and
return real values that leverage these crucial insights. We
define the set of these functions as L:

L = {arithoClass1,oClass2,att1,att2 ,

geomoClass1,oClass2,att1,att2} (1)
where oClass1, oClass2 ∈ O and att1 ∈ Att(oClass1)
and att2 ∈ Att(oClass2):
arithatt1,att2,oClass1,oClass2(s) is the minimal arith-

metic difference between att1 and att2 for all object
instances of oClass1 and oClass2 in s. Similarly,
geomatt1,att2,oClass1,oClass2(s) is the same but for a geo-
metric difference:

arithatt1,att2,oClass1,oClass2(s) =

min
o1 of oClass1∈s,o2 of oClass2∈s

|o1.att1 − o2.att| (2)

geomatt1,att2,oClass1,oClass2(s) =

min
o1 of oClass1∈s,o2 of oClass2∈s

o1.att1
o2.att

(3)

The following example illustrates the arith function for
an OO-MDP with object classes A and B both with at-
tributes attX and attY . Consider an individual state, s,
with one object of class A, A1, and two of class B, B1 and
B2. The respective values of attX and attY are 5 and 10
for A1, 4 and 2 for B1 and 1 and 5 for B2. We can evalu-
ate arithattX,attY,A,B(s) by taking the minimum difference
between the attX value of all A instantiations and the and
attY value of all B instantiations:

arithattX,attY,A,B(s) =

min(|A1.attX −B1.attY |, |A1.attX −B2.attY |) =
min(|5− 4|, |5− 5|) = 0 (4)

Having formulated functions closely informed by transi-
tion dynamics, we now construct our full state featurization.
The ith element of our featurized representation for a state
corresponds to a unique parameterization of a function in L.
That is, each feature uniquely corresponds to a tuple of (a
function in L, a pair of object classes, a pair of object at-
tributes). The ith feature’s value is calculated by evaluating
l ∈ L with a unique parameterization:

v(s)i = latt1,att2,oClass1,oClass2(s) (5)
where att1 and att2 are attribute values of object classes

oClass1 and oClass2 respectively.

3.2 Extracting Annotated Datasets

Having featurized our state space in a manner likely to in-
form transition dynamics, we now want to generate datasets
to be used by a supervised learning classifier. More for-
mally stated, given a set of observations of a RL agent,
O ⊆ (S ×A×S) in an OO-MDP setting (with P = ∅) and
a function that featurizes our states, v(s), we want to infer
some set of annotated datasets, Dv . d ∈ Dv is an annotated
dataset of the form d = ((v(s0), b0), . . . , (v(s|d|), b|d|))
where si corresponds to the initial state in the ith observa-
tion in O, and bi is a boolean.

High level details of our algorithm are as follows. We
maintain predictions as detailed in Section 2.2. Each predic-
tion has an associated annotated dataset. This dataset con-
sists of a set of states featurized according to v. Included
states are those states that were an initial state in an o ∈ O
where the action of o is the prediction’s action. The asso-
ciated label of each state is true if the effect of the predic-
tion was observed to take place between the initial state and
resulting state in o. Otherwise the label is false. The end
result is that each prediction has an associated dataset of
states that notes those states under which the prediction’s
effect took place when its action was executed. Since ef-
fect occurrence is dictated by OO-MDP transition dynam-
ics, generated datasets are closely informed by the transition
dynamics of the OO-MDP. Also note that an integer k is
specified; if there exist more than k related predictions for a
particular prediction, those predictions are deemed unlikely
to predict transition dynamics and so are ruled out. Our al-
gorithm is largely inspired by DOORMAX’s learn routine
(Diuk, Cohen, and Littman 2008). Note that although we
are using RL agent observations, our method is also applica-
ble to planning problems since one can trivially “simulate”
an RL agent if the transition dynamics are known. Pseu-
docode to generate Dv is show in Algorithm 1. ω stores
contradictory predictions.

3.3 Inferring Propositional Functions from
Annotated Datasets

Given a set of labeled datasets Dv where each dataset d ∈
Dv consists of states in S featurized according to some fea-
turization function v with labels of either true or false, we
would like to generate some set of propositional functions.

We treat each dataset as a supervised learning dataset for
learning a single propositional function. A separate binary
classifier is trained on each dataset. This classifier’s classify
routine, in turn, acts as a propositional function: it classi-
fies state s as true or false. We use a J48 decision tree im-
plementation as detailed by (Quinlan 1993) implemented by
the Weka machine learning library (Hall et al. 2009). Other
machine learning methods could straightforwardly supplant
the J48.

Thus the end result is |Dv| classifiers whose classify rou-
tines define |Dv| propositional functions. Having described
how we generate propositional functions, we now explain
how propositional functions of this style can replace those
normally used by DOORMAX.



Algorithm 1 GenerateDataSets()
INPUT: a set of observations O, a state featurizer v, a k in
the DOORMAX sense
OUTPUT: a set of labeled datasets Dv

Dv ← ∅
ω ← ∅
//Loop over observations
for all (s, a, s′) ∈ O do

for all (oClass, att) ∈ (O × Att(oClass)) do
updatedDataSets← ∅
//Loop over hypothesized effects
for all hypEffect ∈ effoClass,att(s, s

′) do
//Check for dataset with prediction for this effect
if ∃ d ∈ Dv s.t. d.pred.effect = hypEffect then

d.add((v(s), true))
updatedDataSets.add(d)

else
if (hypEffect.type, oClass, att, a) 6∈ ω then

newPrediction← (a, null, hypEffect)
newDataSet← {(v(s), true)}
newDataSet.prediction = newPrediction
Dv .add(newPrediction)
//Rule out uninformative datasets
relatedDataSets← ∪d ∈ Dv s.t. d.prediction
is related to newPrediction
if |relatedDataSets|> k then
ω.add((newPrediction.effect, oClass, att,
a))
Dv .removeAll(relatedDataSets)

end if
updatedDataSets.add(d)

end if
end if

end for
//Update all appropriate datasets that did not receive
a true with a false
for all d ∈ Dv and 6∈ updatedDataSets s.t.
d.prediction.action = a do

d.add((v(s), false))
end for

end for
end for
return Dv

3.4 DOORMAX with Learned Propositional
Functions

DOORMAX is an RMax (Brafman and Tennenholtz 2003)
implementation that exploits the OO-MDP state representa-
tion for efficient model learning in deterministic domains.
DOORMAX’s input consists of an OO-MDP without T , a
parameter k which dictates the maximum number of pre-
dictions in any set of related predictions, an initial state s0
and any parameters for planners that it uses. DOORMAX
maintains a set of failure conditions for each action’s effect
on each attribute of each class, F , a set of predictions, α,
and a set of contradictory effect types, object class, attribute,
action tuples, ω. Each time DOORMAX observes a state,
action and resulting state, it performs a learn routine to up-
date its predictions and then a prediction routine to produce
a model that can be planned over.

DOORMAX normally requires propositional functions to
determine the conditions under which an effect is thought
to take place. These conditions are constructed out of the
propositional functions supplied to the OO-MDP. The condi-
tions can be thought of as propositional functions unto them-
selves which return “true” when they match a state’s corre-
sponding condition. We modify DOORMAX by replacing
entire conditions with propositional functions learned in our
framework.

We modify DOORMAX’s learn routine as follows. All
predictions now have an associated dataset of states featur-
ized according to the featurizing function v. States included
in a prediction’s dataset are those states that served as an
initial state in an observation whose action matches the pre-
diction’s action. A state in a prediction’s dataset is labeled
with “true” if the prediction’s effect was observed to take
place from that state. A state is labeled with “false” other-
wise. The rest of the DOORMAX learn machinery runs as
usual. Full pseudocode is shown in Algorithm 2.

We modify DOORMAX’s predict routine as follows.
Each prediction is now associated with a dataset rather than
a condition. A classifier is trained on each prediction’s
dataset. When predicting a resulting state, a prediction’s ac-
tion is posited if the trained classifier returns “true” for the
current state. As before, we use a J48 decision tree for our
classifier. If contradictory effects are returned or there is no
relevant prediction or failure condition, transition to an illu-
sory state of maximum reward, RMAX, is predicted. Full
pseudocode is shown in Algorithm 3.

Our modified version of DOORMAX consists of classic
DOORMAX with its learn and predict routines replaced by
Algorithms 2 and 3 respectively.

4 Experimental Results

We empirically confirm the correspondence between our
learned propositional functions and those normally provided
by experts. We also demonstrate the near DOORMAX-level
performance of our novel DOORMAX algorithm in a taxi
domain.



Algorithm 2 DOORMAXLearnWithoutPFs()
INPUT: a state s, an action a and the state s′ that re-
sulted from taking a in s and the variables from top-level
DOORMAX
OUTPUT: none

for all (oClass, att) ∈ (O × Att(oClass)) do
updatedPredictions← ∅
//Loop over hypothesized effects
for all hypEffect ∈ effoClass,att(s, s

′) do
//Check for prediction for this effect
if ∃ pred ∈ ω s.t. pred.effect = hypEffect then

pred.d.add((v(s), true))
updatedPredictions.add(pred)

else
if (hypEffect.type, oClass, att, a) 6∈ ω then

newDataSet← {(v(s), true)}
newPrediction← (a, null, hypEffect)
newPrediction.dataSet = newDataSet
ω.add(newPrediction)
//Rule out predictions if more than k related
relatedPredictions← ∪p ∈ ω s.t. p is related to
newPrediction
if |relatedPredictions|> k then
ω.add((newPrediction.effect, oClass, att, a))
ω.removeAll(relatedDataSets)

end if
updatedPredictions.add(newPrediction)

end if
end if

end for
//Update all appropriate datasets that did not receive a
true with a false
for all p ∈ ω and 6∈ updatedPredictions s.t. p.action =
a do

p.d.add((v(s), false))
end for

end for

4.1 Taxi Domain
Taxi problems (Dietterich 2000) consist of an agent that can
move north, east, south and west in a two-dimensional grid
world, wherein movement actions may be thwarted by walls.
In taxi problems, walls occupy space between cells rather
than cells themselves and there are also passengers, each of
which occupy a single cell and which the taxi can pick up
or drop off. When a passenger is picked up it moves with
the taxi until dropped off. The problem is considered solved
when all passengers are delivered to their goal cells.

Figure 1 visualizes what we term the classic taxi state.
The grey circle corresponds to the taxi. Squares of various
colors indicate goal locations for theoretical passengers. The
red circle corresponds to the passenger who wishes to be
delivered to the red square. Walls are black lines and there
are implicit walls around the edges of the map.

Algorithm 3 DOORMAXPredictWithoutPFs()
INPUT: The variables from top-level DOORMAX
OUTPUT: A model, T
for all (s, a) ∈ (S ×A) do

totalPool← ∅
for all (objectClass) ∈ O do

currentPool← ∅
for all eType ∈ Y do

for all att ∈ Att(O) do
for all pred ∈ α s.t. pred.action == a and
pred.effect.effectType == eType do

classifier = J48(pred.d)
if classifier.classify(s) then

currentPool.add(pred.effect)
end if

end for
end for
if ∃(e1, e2) ∈currentPool such that e1 contradicts
e2 then
T (s, a,RMAX) = 1, continue looping over
(s, a)

end if
if currentPool.isEmpty() and (eType, oClass, att,
a) 6∈ ω then
T (s, a,RMAX) = 1, continue looping over
(s, a)

end if
end for

end for
//Apply all predicted effects
resultingState← s
for all effect ∈ totalPool do

resultingState← effect(resultingState)
end for
T (s, a, resultingState) = 1

end for
return T

Figure 1: The classic taxi domain problem



The formal OO-MDP representation of the taxi problem
used in our experiments is as follows:
A : { taxiMoveNorth, taxiMoveEast,

taxiMoveSouth, taxiMoveWest, pickupPassenger,
dropOffPassenger}
O : { goalLocation(xLocation, yLocation, goalType),
taxi(xLocation, yLocation, passengerInTaxi),
passenger(xLocation, yLocation, goalType, inTaxi),
verticalWall(wallOffSet, bottom, top),
horizontalWall(wallOffSet, leftStart, rightStart) }
Values in parenthesis indicate attributes of each of the ob-

ject classes. Note that goalLocations are locations that pas-
sengers with matching goalTypes are trying to reach. The
offset of vertical walls indicates the horizontal offset from
the origin whereas the bottom and top attributes indicate the
start and end y positions of the wall. Symmetric clarification
applies to horizontal walls. All attributes range over Z .
R : uniform -1 for all states.
T : Transitions are deterministic and self-evident by ac-

tion names.
γ : .95.
S : all those states reachable from the initial state usingA

according to T .
Additionally, conventional taxi problems supply a set of

expert-provided propositional functions, P . The functions
traditionally provided are:
P : { wallToNorthOfTaxi, wallToEastOfTaxi,
wallToSouthOfTaxi, wallToWestTaxi,
passengerInTaxi, taxiAtPassenger }
Our taxi domain is a set of taxi OO-MDPs where S is the

only aspect of the OO-MDP that varies. The S for a partic-
ular OO-MDP is those states reachable by A from an initial
state. The initial state is identical to the classic taxi OO-
MDP initial state but with the three vertical walls, all passen-
gers’ initial positions, all goal locations’ positions and the
taxi’s initial position uniformly and independently random-
ized within the boundaries of the map. The width and height
of the map also are uniformly and independently random-
ized between 5 and 30. The map is not necessarily square.

4.2 Agreement with Existing Propositional
Functions

We demonstrate correspondence between our learned propo-
sitional functions and those normally expert-provided for
our taxi domain. Taxi domain is used because 4 of those
propositional functions normally supplied for the OO-MDP
directly correspond to four propositional functions that will
be learned by our method: wallToEast, wallToWest, wall-
ToSouth and wallToNorth. This correspondence exists be-
cause the conditions for four predictions of DOORMAX
when run on a taxi domain are uniquely determined by one
of these propositional functions. For instance, the predic-
tion that north adds 1 to the agent’s y position has a con-
dition that only depends on the wallToNorth propositional
function. This direct correspondence accommodates ease of
evaluation of the efficacy with which we learn propositional
functions, since we may simply compare a given learned
proposition to its expert counterpart.

Figure 2: Percent error rates for learned propositional func-
tions (PFs) compared to expert-provided PFs

Experimental Setup Our training set consists of 10,000
observations of the result of random actions on random
states where random states are sampled uniformly from the
union of all states of all OO-MDPs in the domain. |Dv| = 6
and we examine error rates for the 4 propositional functions
that correspond to a wall being adjacent to the taxi for north,
east, south and west. Error quantification involves 10 tri-
als of sampling 1,000 states uniformly from the union of all
states defined by all OO-MDPs in the domain (for 10,000
states total) and measuring the percentage of states for which
learned propositional functions predict something different
from their corresponding propositional function in P . Cor-
responding functions were manually determined.

Experimental Results When propositional functions are
learned across the taxi domain, we observe a strong cor-
respondence between propositional functions in P and
their corresponding learned propositional functions. The
wallToNorth and wallToSouth propositional functions are
learned nearly perfectly. We attribute this result to the fact
that there are no horizontal walls in our taxi domain other
than those at the top or bottom of the map, making learning
adjacency to horizontal walls particularly easy. Full results
are detailed in Figure 2.

4.3 DOORMAX with Learned Propositional
Functions

We now test our modified DOORMAX, which uses learned
rather than expert-provided propositional functions.

Experimental Setup We conduct experiments in a taxi
domain problem with the classic taxi domain state as the
initial state. We run tabular RMAX, classic DOORMAX,
as well as our modified DOORMAX. k = 2 for both ver-
sions of DOORMAX. Each algorithm is allowed to run un-
til a learning episode terminates by arriving in the terminal
state. 10 learning episodes are run for all three algorithms.
The number of cumulative steps for all previous learning
episodes is reported for each learning episode. Since a uni-
form negative reward is used, the number of cumulative
steps is equivalently interpreted as cumulative cost received.
When the slope of this plot ceases to change, the algorithm
has converged on a policy.

Experimental Results RMAX takes approximately 4,500
actions to converge on the (optimal) policy, which we



Figure 3: Performance of RMAX(RMAX), classic DOOR-
MAX (DOORMAXWITHPFs), and DOORMAX with
learned propositional functions(DOORMAXWithoutPFs)

Figure 4: Expansion of the performance data in Figure 3

might reasonably expect given RMAX’s slow, tabular na-
ture. DOORMAX with expert-provided propositional func-
tions takes approximately 260 actions, and our DOORMAX
without any expert-provided propositional functions takes
350 actions. Our novel DOORMAX, then, performs nearly
as well as classic DOORMAX but requires dramatically less
expert knowledge in the form of propositional functions.
Full results are shown in Figures 3 and 4.

5 Related Work
Jetchev, Lang, and Toussaint perform notably similar work
in a robotics setting. They formalize symbol abstraction as
an optimization problem. Symbols have associated proposi-
tional functions and a loss signal is received based on how
well the symbols predict transition dynamics and received
reward. Propositional functions are learned by training clas-
sifiers on a “geometric feature” representation of the prob-
lem. While their work and our work both approach learn-
ing propositional functions by exploiting transition dynam-
ics, their work approaches it from a function optimization
perspective while our method approaches the problem from
an OO-MDP framework. We suspect that our OO-MDP ap-
proach will lend itself to greater generalization than Jetchev,
Lang, and Toussaint’s method because it is factored around
objects. We hope to further compare our methodologies in
future work.

Konidaris, Kaelbling, and Lozano-Perez present theoreti-
cal results for what sorts of symbolic representations are suf-
ficient for evaluating plans in low-level continuous domains
and present a means to automatically learn these represen-
tations (2014; 2015). In particular they demonstrate that an
agent’s environment and the actions available to an agent
fully determine the symbolic representations needed for re-
lational planning. While this work deals with semi-Markov

decision processes (SMDPs) with action spaces that include
options (Sutton, Precup, and Singh 1999) (unlike our OO-
MDP domains), the intimate relationship it describes be-
tween symbolic representations and an agent’s environment
is encouraging for our work, which exploits the agent’s envi-
ronment in the form of the transition dynamics of the agent’s
domain. Furthermore, our work differs in that our goal is not
to learn propositional functions that replace the state space
for high-level relational planning, but augment it with use-
ful information that can be used in various ways, such as for
model learning.

Autoencoders (Hinton and Salakhutdinov 2006) can be
used similarly to our methodology to learn high-level rep-
resentations. An autoencoder is an artificial neural network.
Given sample inputs, autoencoders are trained to learn the
identity function by setting their target output layer to be
identical to the input layer. The hidden nodes of the net-
work act as a compression of the data that can then be used
as a high-level representation. However, autoencoders do
not learn object-parameterized binary functions that could
be used as propositional functions for OO-MDPs and there-
fore may not generalize in the same ways.

Deep Q-Learning also compresses large state spaces by
using a deep neural network for function approximation in
Q-Learning (Mnih et al. 2013). However, Deep Q-Learning
is focused on model-free learning, whereas our approach
greatly benefits model-based RL algorithms, which can pro-
vide different opportunities for knowledge transfer and gen-
eralization.

Batch incremental feature dependency discovery (Batch-
iFDD) (Geramifard et al. 2013a) also offers a means of de-
riving novel propositional functions in planning domains.
In particular, it learns useful conjunctions of more atomic
propositional functions in batch. However, this methodol-
ogy requires an initial pool of atomic propositional func-
tions, which are method does not, and so it does not fill the
same niche as our approach. We are, nonetheless, interested
in supplying our learned propositional functions as atomic
propositions to Batch-iFDD.

6 Conclusion
We present a means of automatically learning propositional
functions for planning and RL algorithms. Our method per-
forms propositional function inference over RL agent ob-
servations. Given the generality of OO-MDP propositional
functions, our learned propositional functions could play a
critical role in knowledge transfer algorithms that transfer
knowledge both within a single OO-MDP (e.g. DOOR-
MAX or (Geramifard et al. 2013b)) and those that trans-
fer knowledge across OO-MDPs with distinct state spaces
(e.g. (Abel et al. 2015)). We demonstrate the former by sup-
planting the normally expert-provided propositional func-
tions of DOORMAX with our learned propositional func-
tions. Note that no aspect of our algorithm requires de-
terminism, so our propositional functions are learnable in
both deterministic and stochastic domains. Empirical re-
sults are gathered in taxi domain and include demonstra-
tion of correspondence between learned propositional func-
tions and those normally expert-provided. We also demon-



strate the near DOORMAX-level performance of our mod-
ified DOORMAX, which runs without propositional func-
tions.

In future work we hope to explore the extent to which
these learned propositional functions can be utilized. In par-
ticular we are interested in applying these learned proposi-
tional functions to the many algorithms that exploit propo-
sitional functions for planning and RL (Abel et al. 2015;
Geramifard et al. 2013b). We also want to explore ways
of ruling out superfluous predictions and their associated
datasets as well as principled manners of applying our
methodology to stochastic domains.
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