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Abstract A key aim of current research is to create robots that can reliably manip-
ulate objects. However, in many applications, general-purpose object detection or
manipulation is not required: the robot would be useful if it could recognize, lo-
calize, and manipulate the relatively small set of specific objects most important in
that application, but do so with very high reliability. Instance-based approaches can
achieve this high reliability but to work well, they require large amounts of data
about the objects that are being manipulated. The first contribution of this paper is a
system that automates this data collection using a robot. When the robot encounters
a novel object, it collects data that enables it to detect the object, estimate its pose,
and grasp it. However for some objects, information needed to infer a successful
grasp is not visible to the robot’s sensors; for example, a heavy object might need to
be grasped in the middle or else it will twist out of the robot’s gripper. The second
contribution of this paper is an approach that allows a robot to identify the best grasp
point by attempting to pick up the object and tracking its successes and failures. Be-
cause the number of grasp points is very large, we formalize grasping as an N-armed
bandit problem and define a new algorithm for best arm identification in budgeted
bandits that enables the robot to quickly find an arm corresponding to a good grasp
without pulling all the arms. We demonstrate that a stock Baxter robot with no ad-
ditional sensing can autonomously acquire models for a wide variety of objects and
use the models to detect, classify, and manipulate the objects. Additionally, we show
that our adaptation step significantly improves accuracy over a non-adaptive system,
enabling a robot to improve its pick success rate from 55% to 75% on a collection
of 30 household objects. Our instance-based approach exploits the robot’s ability to
collect its own training data, enabling experience with the object to directly improve
the robot’s performance during future interactions.

1 Introduction

Robotics will assist us at childcare, help us cook, and provide service to doctors,
nurses, and patients in hospitals. Many of these tasks require a robot to robustly
perceive and manipulate objects in its environment, yet robust object manipulation
remains a challenging problem. Transparent or reflective surfaces that are not visible
in IR or RGB make it difficult to infer grasp points [24], while emergent physical
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(a) Before learning, the ruler slips. (b) After learning, the robot picks it up.

Fig. 1 Before learning, the robot grasps the ruler near the end, and it twists out of the gripper and
falls onto the table; after learning, the robot successfully grasps near the ruler’s center of mass.

dynamics cause objects to slip out of the robot’s gripper; for example, a heavy object
might slip to the ground during transport unless the robot grabs it close to the center
of mass. Instance-based approaches that focus on specific objects can have higher
accuracy but usually require training by a human operator, which is time consuming
and can be difficult for a non-expert to perform [15, 19, 20]. Existing approaches
for autonomously learning 3D object models often rely on expensive iterative closest
point-based methods to localize objects, which are susceptible to local minima and
take time to converge [17].

To address this problem, we take an instance-based approach, exploiting the
robot’s ability to collect its own training data. Although this approach does not gen-
eralize to novel objects, it enables experience with the object to directly improve the
robot’s performance during future interactions, analogous to how mapping an envi-
ronment improves a robot’s ability later to localize itself. After this data collection
process is complete, the robot can quickly and reliably manipulate the objects. Our
first contribution is an approach that enables a robot to achieve the high accuracy of
instance-based methods by autonomously acquiring training data on a per object ba-
sis. Our grasping and perception pipeline uses standard computer vision techniques
to perform data collection, feature extraction, and training. It uses active visual ser-
voing for localization, and only uses depth information at scan time. Because our
camera can move with seven degrees of freedom, the robot collects large quantities
of view-based training data, so that straightforward object detection approaches per-
form with high accuracy. This framework enables a Baxter robot to detect, classify,
and manipulate many objects.

However, limitations in sensing and complex physical dynamics cause problems
for some objects. Our second contribution addresses these limitations by enabling
a robot to learn about an object through exploration and adapt its grasping model
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Fig. 2 Results at each phase of the grasping pipeline.

accordingly. We frame the problem of model adaptation as identifying the best arm
for an N-armed bandit problem [41] where the robot aims to minimize simple regret
after a finite exploration period [3]. Existing algorithms for best arm identification
require pulling all the arms as an initialization step [27, 1, 5]; in the case of iden-
tifying grasp points, where each grasp takes more than 15 seconds and there are
more than 1000 potential arms, this is a prohibitive expense. To avoid pulling all
the arms, we present a new algorithm, Prior Confidence Bound, based on Hoeffding
races [28]. In our approach, the robot pulls arms in an order determined by a prior,
which allows it to try the most promising arms first. It can then autonomously decide
when to stop by bounding the confidence in the result. Figure 1 shows the robot’s
performance before and after training on a ruler; after training it grasps the object in
the center, improving the success rate.

Our evaluation demonstrates that our scanning approach enables a Baxter robot
with no additional sensing to detect, localize, and pick up a variety of household
objects. Further, our adaptation step improves the overall pick success rate from
55% to 75% on our test set of 30 household objects, shown in Figure 5.

2 Grasping System

Our object detection and pose estimation pipeline uses conventional computer vision
algorithms in a simple software architecture to achieve a frame rate of about 2Hz
for object detection and pose estimation. Object classes consist of specific object
instances rather than general object categories. Using instance recognition means
we cannot reliably detect categories, such as “mugs,” but the system will be much
better able to detect, localize, and grasp the specific instances, e.g. particular mugs,
for which it does have models.

Our detection pipeline runs on stock Baxter with one additional computer. The
pipeline starts with video from the robot’s wrist cameras, proposes a small number
of candidate object bounding boxes in each frame, and classifies each candidate
bounding box as belonging to a previously encountered object class. When the robot
moves to attempt a pick, it uses detected bounding boxes and visual servoing to
move the arm to a position approximately above the target object. Next, it uses
image gradients to servo the arm to a known position and orientation above the
object. Because we can know the gripper’s position relative to the object, we can
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reliably collect statistics about the success rate of grasps at specific points on the
object.

2.1 Object Detection

The goal of the object detection component is to extract bounding boxes for objects
in the environment from a relatively uniform background. The robot uses object de-
tection to identify regions of interest for further processing. The input of the object
detection component is an image, I; the output is a set of candidate bounding boxes,
B. Our object detection approach uses a modified Canny algorithm which termi-
nates before the usual non-maximal suppression step [4]. We start by converting I
to a YCbCr opponent color representation. Then we apply 5×5 Sobel derivative fil-
ters [39] to each of the three channels and keep the square gradient magnitude. We
take a convex combination of the three channels, where Cb and Cr and weighted the
same and more heavily than Y because Y contains more information about shadows
and specular information, which adds noise. Finally we downsample, apply the two
Canny thresholds, and find connected components. We generate a candidate bound-
ing box for each remaining component by taking the smallest box which contains
the component. We throw out boxes which do not contain enough visual data to
classify. If a box is contained entirely within another, we discard it.

2.2 Object Classification

The object classification module takes as input a bounding box, B, and outputs a
label for that object, c, based on the robot’s memory. This label is used to identify the
object and look up other information about the object for grasping further down the
pipeline. For each object c we wish to classify, we gather a set of example crops Ec
which are candidate bounding boxes (derived as above) which contain c. We extract
dense SIFT features [22] from all boxes of all classes and use k-means to extract a
visual vocabulary of SIFT features [40]. We then construct a Bag of Words feature
vector for each image and augment it with a histogram of colors which appear in
that image. The augmented feature vector is incorporated into a k-nearest-neighbors
model which we use to classify objects at inference [40]. We use kNN because
our automated training process allows us to acquire as much high-quality data as
necessary to make the model work well, and kNN supports direct matching to this
large dataset.
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2.3 Pose Estimation

For pose estimation, we require a crop of the image gradient of the object at a
specific, known pose. As during the bounding box proposal step, we approximate
the gradient using 5× 5 Sobel derivative filters [39], but we use a different convex
combination of the channels which focuses even less on the Y channel. Camera
noise in the color channels is significant. To cope with the noise, we marginalize
the gradient estimate over several frames taken from the same location, providing a
much cleaner signal which matches more robustly. To estimate pose, we rotate our
training image and find the closest match to the image currently recorded from the
camera, as detected and localized via the pipeline in Section 2.1 and 2.2. Once the
pose is determined, we have enough information to attempt any realizable grasp, but
our system focuses on crane grasps.

Lighting changes between scan and pick time can make it difficult to perform im-
age matching. In order to match our template image with the crop observed at pick
time, we remove the mean from the two images and L2 normalize them. Remov-
ing the mean provides invariance to bias, and normalizing introduces invariance to
scaling. These both help to provide compensation for inadequacies in the lighting.

2.4 Grasping

During grasp point identification, we use a model of the gripper to perform inference
over a depth map of the object. The grasp model scores each potential grasp accord-
ing to a linear model of the gripper in order to estimate grasp success. A default
algorithm picks the highest-scoring grasp point using hand designed linear filters,
but frequently this point is not actually a good grasp, because the object might slip
out of the robot’s gripper or part of the object may not be visible in IR. The input
to this module is the 3D pose of the object, and the output is a grasp point (x,y,θ);
at this point we employ only crane grasps rather than full 3D grasping, where θ is
the angle which the gripper assumes for the grasp. This approach is not a state-of-
the-art but is simple to implement and works well for many objects in practice. In
Section 4, we describe how we can improve grasp proposals from experience, which
can in principle use any state-of-the-art grasp proposal system as a prior.

3 Autonomously Acquiring Object Models

An object model in our framework consists of the following elements, which the
robot autonomously acquires:

• cropped object templates (roughly 200), t1...tK

• depth map, D, which consists of a point cloud, (x,y,z,r,g,b)i, j.
• cropped gradient templates at different heights, t0...tM
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(a) (b) (c)

Fig. 3 Autonomously acquired object model. 3(a): Cropped RGB images, 3(b): Depth map, 3(b):
Aerial gradient images at four different heights.

The robot collects gradient images by servoing to the center of the extracted
bounding box for the object, described in Section 2.1, and then recording a gradient
image at several different heights. It records each image for several frames to aver-
age away noise from the camera. Gradient images for the ruler appear in Figure 3(c).

Next, it acquires a depth image. Normally, this image could be acquired from
an RGB-D sensor such as the Kinect. However, in order to make our approach run
on a stock Baxter robot with no additional sensing, we acquire a depth scan using
Baxter’s IR sensor, turning the arm into a seven degree of freedom, one-pixel depth
sensor. After acquiring visual and IR models for the object at different poses of the
arm, we acquire view-based object models for detection and classification by mov-
ing the camera around the object, extracting bounding boxes from the images, and
storing the resulting crops. Figure 3(a) shows RGB images automatically collected
for one object in our dataset.

4 Bandit-based Model Adaptation

The formalization we contribute treats grasp learning as an N-armed bandit problem.
Formally, the agent is given an N-armed bandit, where each arm pays out 1 with
probability µi and 0 otherwise. The agent’s goal is to identify a good arm (with
payout≥ k) with probability c (e.g., 95% confidence that this arm is good) as quickly
as possible. As soon as it has done this, it should terminate. The agent is also given
a prior π on the arms so that it may make informed decisions about which grasps to
explore.

4.1 Algorithm

Our algorithm, Prior Confidence Bound, iteratively chooses the arm with the highest
observed (or prior) success rate but whose probability of being below k is less than
a threshold. It then tries that arm, records the results, and updates its estimate of
the probability of success, µi. If it is sufficiently certain that the arm’s payout is
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either very good or very bad, it terminates; otherwise, it continues pulling the arm
to collect more information. Pseudo-code appears in Algorithm 1. Our algorithm
takes as input π , an estimate of the payout of each arm, as well as δaccept and δre ject ,
parameters controlling how certain it must be to accept or reject an arm. We need
to estimate the probability that the true payout probability, µi, is greater than the
threshold, c, given the observed number of successes and failures:

Pr(µi > k|S,F) (1)

We can compute this probability using the law of total probability:

Pr(µi > k|S,F) = 1−
∫ k

0
Pr(µi = µ|S,F)dµ (2)

We assume a beta distribution on µ:

=
∫ 1

k
µ

S(1−µ)F dµ (3)

This integral is the CDF of the beta distribution, and is called the regularized
incomplete beta function [32].

The prior controls both the order that arms are explored and when the algorithm
moves on to the next arm. If the prior is optimistic (i.e., overestimates µi), the algo-
rithm will more quickly move on to the next arm if it encounters failures, because
its empirical estimate of µi will be lower than the estimate from the prior of the next
arm to pull. If the prior is pessimistic, the algorithm will be more likely to continue
pulling an arm even if it encounters failure. By using a prior that incorporates proba-
bility estimates, it enables our algorithm to exploit information from the underlying
grasp proposal system and make more informed decisions about when to move on.

4.2 Simulation

We simulate our algorithm by creating a sequence of 50 bandits, where each arm
i pays out at a rate uniformly sampled between 0 and 1. For algorithms that incor-
porate prior knowledge, we sample a vector of estimates for each µi from a beta
distribution with α = β = 1+ e ∗ µi where e controls the entropy of the sampling
distribution.

To compare to a well-known baseline, we assess the performance of Thompson
Sampling [41] in the fixed budget setting, although this algorithm minimizes total
regret, including regret during training, rather than simple regret. Second, we com-
pare to a Uniform baseline that pulls every arm equally until the budget is exceeded.
This baseline corresponds to the initialization step in UCB or the confidence bound
algorithms in Chen et al. [5]. The state-of-the-art CLUCB algorithm from Chen
et al. [5] would not have enough pulls to finish this initialization step in our setting.
Finally, we show the performance of three versions of Prior Confidence Bound, one
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PriorConfidenceBound(π , k, δaccept , δre ject , maxTries)
Initialize S0 . . .Sn to 0
Initialize F0 . . .Fn to 0
totalTries← 0
while true do

totalTries← totalTries+1
Set M0 . . .Mn to S0

S0+F0
... Sn

Sn+Fn

j← bestValidArm; // set j to the arm with pbelow < δre ject that has
the highest marginal value
r← sample(arm j)
if r = 1 then

S j ← S j +1
else

Fj ← Fj +1
end
pbelow←

∫ k
0 Pr(µ j = µ|S j,Fj)dµ

pabove←
∫ 1

k Pr(µ j = µ|S j,Fj)dµ

pthreshold ←
∫ k+ε

k−ε
Pr(µ j = µ|S j,Fj)dµ

if pabove ≥ δaccept then
return j ; // accept this arm

else if pthreshold ≥ δaccept then
return j ; // accept this arm

else if totalTries≥ maxTries then
return maxI ; // return the arm with the best marginal value
out of those that were tried

else
pass ; // keep trying

end
end

Algorithm 1: Prior Confidence Bound for Best Arm Identification

with an uninformed prior (e = 0, corresponding to Hoeffding races [28]), one quite
noisy with e = 1(but still informative), the other less noisy e = 5).

We run each experiment for 100 trials, and report 95% confidence intervals
around the algorithm’s simple regret. For Thompson Sampling and Uniform, which
always use all trials in their budget, we report performance at each budget level; for
Prior Confidence Bound, we report the mean number of trials the algorithm took
before halting, also at 95% confidence intervals.

Results appear in Figure 4. Thompson Sampling always uses all trials in its bud-
get and improves performance as larger budgets are available. The Uniform method
fails to find the optimal arm because there is not enough information when pulling
each arm once. All variants of Prior Confidence Bound outperform these baselines,
but as more prior information is incorporated, regret decreases. Even with a com-
pletely uninformed prior, bounding the confidence and decided when to stop im-
proves performance over Thompson sampling or a uniform baseline, but the ap-
proach realizes significant further improvement with more prior knowledge.
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Fig. 4 Results comparing our approach to various baselines in simulation.

Fig. 5 The objects used in our evaluation, sorted from worst performing (left) to best performing
(right).

5 Evaluation

The aim of our evaluation is to assess the ability of the system to acquire visual mod-
els of objects which are effective for grasping and object detection. We implemented
our approach on a Baxter robot; a video showing our training and grasping pipeline
is available at https://www.youtube.com/watch?v=xfH0B3g782Y.

5.1 Mapping

Mapping assesses the ability of our robot to accurately localize and label objects in
a tabletop scene. The robot maps the scene by maintaining a data structure with an

https://www.youtube.com/watch?v=xfH0B3g782Y
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(a) Tabletop scene with objects (b) Map created for the scene by scanning with
both arms.

Fig. 6 The robot actively scans the table and maps its environment using learned models. (De-
scriptive object labels are provided by hand.)

entry for each cell in its work space, at approximately 1cm resolution, and recording
the last time that cell was observed by the camera. It samples a new cell uniformly
from the set of oldest cells, moves to that location, then runs the detection step. If it
sees an object, it servos to that object, then adds the object’s bounding box and class
label to the map. By running object classification directly over the object, we obtain
high-accuracy recognition rates, since the robot sees the object from a consistent
pose. Figure 6 shows the map created in this way for a tabletop scene. We compute
colors for each cell by taking the average of camera pixel colors at that cell, given
the current table height.

5.2 Pick and Place

The robot acquired visual and RGB-D models for 30 objects using our autonomous
learning system. The objects used in our evaluation appear in Figure 5. We manually
verified that the scans were accurate, and set the following parameters: height above
the object for the IR scan (to approximately 2cm); this height could be acquired
automatically by doing a first coarse IR scan following by a second IR scan 2cm
above the tallest height, but we set it manually to save time. Additionally we set the
height of the arm for the initial servo to acquire the object. After acquiring visual
and IR models for the object at different poses of the arm, the robot performed the
bandit-based adaptation step using Algorithm 1. The algorithm requires a scoring
of candidate grasps, π , which we provided using the linear filter described in Sec-
tion 2.4. In principle, we could use any state-of-the-art system for proposing grasps
in the prior (e.g., [9, 34, 36]); if the proposed grasp is successful, the algorithm will
quickly terminate. Otherwise it will continue trying to pick until it finds a successful
grasp.
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(a) The depth map for the glass bowl
without a contrast agent applied is noisy
and leads to poor grasp hypothesis.

(b) When a contrast agent is applied,
the depth map is clean and grasp perfor-
mance improves. In our method, the con-
trast agent is only needed at scan time,
not at pick time.

Fig. 7 Depth map for a transparent object with and without a contrast agent.

After the robot detects an initially successful grab, it shakes the object vigorously
to ensure that it would not fall out during transport. After releasing the object and
moving away, the robot checks to make sure the object is not stuck in its gripper. If
the object falls out during shaking or does not release properly, the grasp is recorded
as a failure. If the object is stuck, the robot pauses and requests assistance before
proceeding.

Most objects have more than one pose in which they can stand upright on the
table. If the robot knocks over an object, the model taken in the reference pose is
no longer meaningful. Thus, during training, we monitored the object and returned
it to the reference pose whenever the robot knocked it over. In the future, we aim to
incorporate multiple components in the models which will allow the robot to cope
with objects whose pose can change during training.

5.2.1 Contrast Agents

Many objects are challenging to grasp for our approach because they are transparent
or dark in IR; grasping objects in spite of these issues is a challenging problem
that remains an active area of research [11, 29]. As in Lysenkov et al. [24], which
used paint to construct models of objects, apply a contrast agent to make the object
visible in IR. Because our approach only uses depth information at scan time, and
not at grasping time, and is heavily instance-based, it enables us to we apply a
temporary coating for the IR scan and then remove it for learning visual models and
later interaction with the object. (We found that hair spray coated with a layer of
flour gives good performance, but can be easily removed.) Figure 7 shows an object
and IR scan with and without a contrast agent. This demonstrates the advantage of
our view-based and instance-based approach, which uses IR only during the single,
initial scan, and not at inference time; once a good scan is obtained, grasps can be
proposed at any time in the future and high-quality grasps can be learned through
training. For the glass bowl in Figure 7, pick accuracy improved from 0/10 without
a contrast agent to 8/10 with a contrast agent applied during the IR scan only and
removed before the pick trials.
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5.2.2 Bandit-Based Adaptation

We evaluate our bandit-based adaptation step by allowing the robot to try grasps
on the object until it either halts or reaches a maximum of 50 grasp attempts. Our
algorithm used an accept threshold of 0.7, reject confidence of 0.95 and epsilon
of 0.2. These parameters result in a policy that rejects a grasp after one failed try,
and accepts if the first three picks are successful. Different observations of success
and failure will cause the algorithm to try the grasp more to determine the true
probability of success.

We report the performance of the robot at picking using the learned height for
servoing, but without grasp learning, then the number of trials used for grasp learn-
ing by our algorithm, and finally the performance at picking using the learned grasp
location and orientation. These results appear in Table 1.

Low-Performing Objects

Before
Learning

During
Learning

After
Learning

Garlic Press 0/10 8/50 2/10
Helicopter 2/10 8/39 3/10
Gyro Bowl 0/10 5/15 3/10
Big Syringe 1/10 13/50 4/10
Sippy Cup 0/10 6/50 4/10

Clear Pitcher 4/10 3/4 4/10
Red Bucket 5/10 3/3 5/10

Wooden Spoon 7/10 3/3 7/10
Dragon 8/10 5/6 7/10

Triangle Block 0/10 3/13 7/10
Bottle Top 0/10 5/17 7/10

Ruler 6/10 5/12 7/10

High-Performing Objects

Before
Learning

During
Learning

After
Learning

Epipen 8/10 4/5 8/10
Icosahedron 7/10 7/21 8/10

Stamp 8/10 3/3 8/10
Blue Salt Shaker 6/10 5/10 8/10

Wooden Train 4/10 11/24 8/10
Packing Tape 9/10 3/3 9/10
Purple Marker 9/10 3/3 9/10

Round Salt Shaker 1/10 4/16 9/10
Toy Egg 8/10 4/5 9/10

Yellow Boat 9/10 5/6 9/10
Vanilla 5/10 4/5 9/10
Brush 10/10 3/3 10/10

Red Bowl 10/10 3/3 10/10
Shoe 10/10 3/3 10/10

Whiteout 10/10 3/3 10/10
Metal Pitcher 6/10 7/12 10/10

Mug 3/10 3/4 10/10
Syringe 9/10 6/9 10/10

Table 1 Results from the robotic evaluation of Prior Confidence Bound, sorted by pick success
rate. All objects either maintained or improved performance after learning except for one: Dragon.

Some objects significantly improved performance. Objects that improved typi-
cally had some feature that prevented our grasping model from working. For exam-
ple, the triangular block failed with the prior grasp because the gripper slid over the
sloped edges and pinched the block out of its grippers. The robot tried grasps until
it found one that targeted the sides that were parallel to the grippers, resulting in a
flush grasp, significantly improving accuracy. For the round salt shaker, the robot
first attempted to grab the round plastic dome, but the gripper is not wide enough
for this grasp. It tried grasps until it found one on the handle that worked reliably.
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Objects such as the round salt shaker and the bottle top are on the edge of
tractability for thorough policies such as Thompson sampling. Prior Confidence
Bound, on the other hand, rejects arms quickly so as to make these two objects
train in relatively short order while bringing even more difficult objects such as the
sippy cup and big syringe into the realm of possibility. It would have taken sub-
stantially more time and picks for Thompson sampling to reject the long list of bad
grasps on the sippy cup before finding the good ones.

The garlic press is a geometrically simple object but quite heavy compared to
the others. The robot found a few grasps which might have been good for a lighter
object, but it frequently shook the press out of its grippers when confirming grasp
quality. The big syringe has some good grasps which are detected well by the prior,
but due to its poor contrast and transparent tip, orientation servoing was impre-
cise and the robot was unable to learn well due to poor signal. What improvement
did occur was due to finding a grasp which consistently deformed the bulb into a
grippable shape regardless of the perceived orientation of the syringe. We observed
similar problems with the clear pitcher and icosahedron.

Objects that failed to improve fall into several categories. For some, performance
was already high, so there was not much room to move or a reasonable grasp was
accepted quickly without waiting to find a better one. A common failure mode for
poorly performing objects was failure to accurately determine the position and ori-
entation through visual servoing. If the grasp map cannot be localized accurately,
significant noise is introduced because the map does not correspond to the same
physical location on the object at each trial. For example, there is only about a 5mm
difference between the width of the dragon and the width of the gripper; objects
such as these would benefit from additional servo iterations to increase localization
precision. If we double the number of iterations during fine grained servoing we
can more reliably pick it, but this would either introduce another parameter in the
system (iterations) or excessively slow down other objects which are more tolerant
to error.

6 Related Work

Pick-and-place has been studied since the early days of robotics [2, 23]. Initial sys-
tems relied on models of object pose and end effector pose being provided to the
algorithm, and simply planned a motion for the arm to grasp. Modern approaches
use object recognition systems to estimate pose and object type, then libraries of
grasps either annotated or learned from data [36, 8, 30]. These approaches attempt
to create systems that can grasp arbitrary objects based on learned visual features or
known 3D configuration.

Collecting training sets is an expensive process and is not accessible to the av-
erage user in a non-robotics setting. If the system does not work for the user’s par-
ticular application, there is no easy way for it to adapt or relearn. Our approach
enables the robot to autonomously acquire more information to increase robustness
at detecting and manipulating the specific object that is important to the user at the
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current moment. Other approaches that focus on object discovery and manipulation
fail to combine a camera that moves with an end to end system that learns to recog-
nize objects and improves grasp success rates through experience [25, 16, 6, 37].

We formalize the problem as an N-armed bandit [41] where the robot aims to per-
form best arm identification [1, 5], or alternatively, to minimize simple regret after
a finite exploration period [3]. Audibert and Bubeck [1] explored best arm identi-
fication in a fixed budget setting; however a fixed budget approach does not match
our problem, because we would like the robot to stop sampling as soon as it has
improved performance above a threshold. We take a fixed confidence approach as
in Chen et al. [5], but their fixed confidence algorithm begins by pulling each arm
once, a prohibitively expensive operation on our robot. Instead our algorithm esti-
mates confidence that one arm is better than another, following Hoeffding races [28]
but operating in a confidence threshold setting that incorporates prior information.
By incorporating prior information, our approach achieves good performance with-
out being required to pull all the arms. Kaufmann et al. [12] describe Bayesian upper
confidence bounds for bandit problems but do not use simple regret, with a train-
ing period followed by an evaluation period. Additionally these approaches do not
provide a stopping criterion, to decide when to move to the next object.

By formalizing grasp identification as a bandit problem, we are able to lever-
age existing strategies for inferring the best arm. Our system brings together key
techniques in autonomous data collection and online learning for persistent robotic
systems to establish a baseline grasping system which we show to be useful and ex-
tensible. Nguyen and Kemp [31] learn to manipulate objects such as a light switch
or drawer with a similar self-training approach. Our work autonomously learns vi-
sual models to detect, pick, and place previously unencountered rigid objects by
actively selecting the best grasp point with a bandit based system, rather than ac-
quiring models for the manipulation of articulated objects. We rely on the fixed
structure of objects rather than learning how to deal with structure that can change
during manipulation.

Hudson et al. [10] used active perception to create a grasping system capable
of carrying out a variety of complex tasks. Using feedback is critical for good per-
formance, but the model cannot adapt itself to new objects. Existing general pur-
pose grasp algorithms achieve fairly good performance on novel objects but leave
appreciable gaps which could be closed by using our system to learn from expe-
rience [33, 34, 26, 9, 21]. Kroemer et al. [18] also use reinforcement learning to
choose where to grasp novel objects, operating in continuous state spaces. How-
ever their approach does not incorporate prior knowledge and requires forty or more
trials to learn a good grasp; in contrast, because our approach incorporates prior
knowledge, we often obtain improvement after trying only a few grasps.

Collet et al. [6] describe an approach for lifelong robotic object discovery, which
infers object candidates from the robot’s perceptual data. This system does not learn
grasping models and does not actively acquire more data to recognize, localize, and
grasp the object with high reliability. It could be used as a first-pass to our system,
after which the robot uses an active method to acquire additional data enabling it to
grasp the object. Some approaches integrate SLAM and moving object tracking to
estimate object poses over time but have not been extended to manipulation [42, 7,
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35, 38]. Crowd-sourced and web robotics have created large databases of objects and
grasps using human supervision on the web [14, 13]. These approaches outperform
automatically inferred grasps but still require humans in the loop. Our approach can
incorporate human annotations in the form of the prior: if the annotated grasps work
well, then the robot will quickly converge and stop sampling; if they are poor grasps,
our approach will find better ones.

7 Conclusion

The contribution of this paper is a system for automatically acquiring instance-based
models of objects using a Baxter robot. Using our approach, the robot scans objects
and collects RGB and depth information, which it then uses to perform detection,
classification, and grasping. We demonstrate that the robot can improve grasping
performance through active exploration by formalizing the grasping problem as best
arm identification on an N-armed bandit. This approach significantly improves the
robot’s success rate at grasping specific objects as it practices picking them.

A limitation of our system is the requirement that a target object be in a canonical
upright position with respect to the table, leaving only one degree of freedom to
describe its orientation and two for its position. In our evaluation, if the salt shaker
fell down, we reset it to a randomized upright position. With this paradigm, if we
want to be able to handle the salt shaker whether it is upright or on its side, we
must train two models and use logic outside the system to identify the models as
the same object. Our next goal is to automatically explore these object modes and
acquire classification, localization, grasping, and transition models for them over a
long period of time. This improvement will enable any Baxter robot to automatically
scan objects for long periods of time.

A second limitation is that by taking an instance-based approach, knowledge
obtained from interacting with one object does not generalize to another object. Our
approach runs on a stock Baxter robot and does not require any additional sensing.
We aim to release our software so that anyone with a Baxter can train models using
our approach and automatically share their models through a common database.
This approach will enable us to scale up and distribute the scanning effort, so that a
very large corpus of instance-based models can be automatically collected. As more
and more models are collected, containing RGB image crops, point clouds, and logs
of grasp success rates at different geometries, this data set will provide a unique
opportunity to train new category-based models for general detection and grasping,
supplying well-annotated data of multiple views of many instances of individual
objects.

Our system focuses on manipulation of small objects; however, objects in the
environment have more affordances than just manipulation: bottles can be opened;
light switches can be flipped; buttons can be pushed, and doors can be unlocked.
We aim to expand our approach to instance-based semantic mapping of large-scale
environments, so that the robot can interactively learn about features of its environ-
ment such as drawers, door knobs, and light switches. By taking an instance-based
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approach, the robot can automatically create robust detectors for object features and
fix up any problems through interaction with the environment. This approach will
create a true semantic map of the environment, including affordances of objects.
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