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Abstract

Advances in artificial intelligence algorithms
and techniques are quickly allowing us to cre-
ate artificial agents that interact with the real
world. However, these agents need to main-
tain a carefully constructed abstract represen-
tation of the world around them [9]. Recent re-
search in deep reinforcement learning attempts
to overcome this challenge. Mnih et al. [24] at
DeepMind and Levine et al. [18] demonstrate
successful methods of learning deep end-to-end
policies from high-dimensional input. In addi-
tion, Bohmer et al. [1] and Mattner et al. [22]
extract deep state representations that can be
used with traditional value function approxi-
mation algorithms to learn policies. We present
a model that discovers low-dimensional deep
state representations in a similar fashion to the
deep fitted Q algorithm [1]. A plethora of func-
tion approximation techniques can be used in
the lower dimension space to obtain the Q-
function. To test our algorithms, we run sev-
eral experiments on 80 x 20 images taken from
a 10 x 2 grid world and show that convolu-
tional autoencoders can be trained to obtain
deep state representations that are almost as
good as knowing the ground-truth state.

1 Introduction

Reinforcement learning provides an excellent framework
for planning and learning in non-stochastic domains.
Since inception it has been used to accomplish a wide
variety of tasks, from robotics [10, 5, 15] to sequential
decision-making games [32, 11], and dialogue systems
[27, 34].

However, many reinforcement learning algorithms
have a run-time that is polynomial in the number of
states and actions. To learn in large domains, researchers
have had to carefully craft features of their state space
so that they are general enough to represent the orig-
inal problem, but small enough to be computationally
tractable.

Figure 1: A 80 x 20 gray scale image of the 10 x 2 state.
The agent is at location (3,0) and the goal is at location
(9,1).

Feature engineering becomes a major hindrance as we
create learning agents for more complex state spaces.
Additionally, it requires expert knowledge and does not
generalize well across different domains. Several areas of
research attempt to deal with the challenge of exponen-
tially large state spaces, such as Monte Carlo Tree Search
[2], hierarchical planning [4, 30, 7], and value function
approximation [29].

Here we take an alternative approach with a focus on
planning with sensor input. Visual information is an eas-
ily accessible rich source of information, however uncov-
ering structured information is a difficult and well stud-
ied problem in computer vision. Many vision problems
have been solved through the use of carefully crafted
features such as scale invariant feature transformations
[20] and histogram of gradients [3]. Recent advances
in deep learning have made it possible to automatically
extract high-level features from raw visual data, lead-
ing to breakthroughs in several areas of computer vision
14, 26, 23].

In our model we use neural networks as an unsuper-
vised technique to learn an abstract feature represen-
tation of the raw visual input. Similar to hierarchical
techniques, these neural networks allow us to plan in
the (significantly simplified) abstract state space. This
model is similar to the algorithm designed by DeepMind
that plays Atari 2600 games from visual input [24]. How-
ever their algorithm performs end-to-end learning (which
directly produces a policy), whereas ours learns a deep
state representation that can be used by a variety of re-
inforcement learning algorithms. In addition, the Deep-
Mind algorithm does not allow for model-based alterna-
tives, as we believe ours does. Bohmer et al. [1], Mattner
et al. [22] have created a deep fitted Q (DFQ) algorithm
that is very similar to what we propose, however our use
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Figure 2: Autoencoder architectures

of convolutional autoencoders takes advantage of image
structure and produces better state representations.

We used 80 x 20 pixel gray scale images taken from a
10x 2 grid world, an example state may be seen in Figure
1. Because the 10 x 2 grid world can be characterized
by only two numbers — the agent’s x and y coordinates —
one of our goals is to attempt to compress these images
to a two dimensional output.

In Section 2 we give a brief overview of reinforcement
learning and deep learning. Section 6 reviews state of the
art techniques that combine reinforcement learning and
deep learning. Then in Section 3 we introduce our mod-
els, and show their empirical performance in Sections 4
and 5.

2 Background

This section should serve as a self-contained introduction
to reinforcement learning and deep learning for those
who are not already familiar with the fields.

2.1 Reinforcement Learning

Reinforcement learning problems are typically modelled
as a Markov Decision Process (MDP). A MDP is a five-
tuple: (S, A, T,R,7), where S is a state space; A is
the agent’s set of actions; 7 denotes T (s’ | s,a), the
transition probability of an agent applying action a € A
in state s € S and arriving in s’ € S; R(s,a,s’) denotes
the reward received by the agent for applying action a
in state s and transitioning to state s’; and vy € [0,1] is a
discount factor that defines how much the agent prefers
immediate rewards over future rewards (the agent prefers
to maximize immediate rewards as y decreases). MDPs
may also include terminal states that cause all action to
cease once reached.

Reinforcement learning involves estimating a value
function from experience, simulation, or search [28, 33].
Typically the value function is parametrized by the state
space — there exists one unique entry per state. However
in continuous state spaces (or as we will later see, in
large discrete state spaces) it is desirable to find an al-
ternate parametrization of the value function. The most
common technique for doing so is linear value function
approximation, where the value function is represented

as a weighted linear sum of a set of features [12]. These
features are also known as basis functions, some com-
mon examples being Radial Basis Functions, CMACs,
and the Fourier Basis Function.

One particular algorithm for learning a linear value
function approximation is Gradient Descent SARSA())
[25]. This algorithm combines Q-learning with Tempo-
ral Difference learning (TD-learning) to learn the Q-
function '. Lin [19] derives an update equation for a
Q-learning algorithm that uses a neural network basis
function (it is also applicable to any other basis func-
tion) with weights w.

0Q+)
B (1)

The Gradient Descent SARSA(\) update scheme is
similar with two notable exceptions. First, in order to
update previous states Aw; is multiplied by a weighted
sum of previous gradients. Second, the max operator is
dropped in favor of using Q41 associated with the ac-
tion that was selected, which allows for a better trade-off
between exploration and exploitation — as the algorithm
converges it will start behaving as if it were always se-
lecting the action that maximizes the Q-function.

Awy =1 |re + ’7211623‘( Qi41(a) — Q¢

2.2 Deep Learning

An autoencoder is a fully-connected neural network that
attempts to learn the identity function. Additionally the
network contains a single hidden layer that has a num-
ber of nodes significantly less than the input. During
training the autoencoder attempts to find a good com-
pression of the input data. In addition, autoencoders
can be stacked — the output of one autoencoder’s hid-
den layer as the input of another — to form deep archi-
tectures. Autoencoders and stacked autoencoders have
been shown to be very useful in performing unsupervised
dimensionality reduction [8].

Convolutional neural networks (CNNs) use convolu-
tion to take advantage of the locality of image fea-
tures. In addition, since these networks share the ker-
nel’s weights for each layer, they are be much sparser
than their fully-connected counterparts. CNNs have

"We use Q; as shorthand for Q(s¢t,at).



been used to achieve state of the art performance in im-
age classification [14], face verification [31], and object
detection [17].

3 Architectures

We used autoencoders to learn abstract features for im-
ages similar to the one in Figure 1 in an unsupervised
manner. To train these networks we used backpropaga-
tion on an image set that captures the entirety of the
state space. We combined different numbers of layers
and hidden nodes, and have reported the results for some
of the final models in Section 5. We also used convo-
lutional autoencoders (CAEs) to take advantage of the
structure and locality that is found in naturally occur-
ring images.

The output of the middle layer of the (convolutional)
autoencoders was used as a basis function, which served
as the features for linear value function approximation.
Value function approximation then greedily constructed
a policy that the agent can follow.

3.1 Autoencoders

Autoencoders were an obvious choice because we wanted
to learn abstract features from images in an unsupervised
manner. Backpropagation with a euclidean loss function
was used to train the autoencoders in Figure 2. In addi-
tion, to train the stacked autoencoder in Figure 2(c) we
used layer-wise pre-training to obtain good initialization
for its hidden layers. These weights were then fine-tuned
all together. Both the pre-training and fine-tuning steps
used the entire state-image data set.

Figures 2(a) and 2(b) show two autoencoder architec-
tures with a single layer containing 10 and 20 hidden
nodes respectively. Figure 2(c) is a stacked autoencoder
whose middle-most hidden layer has only two nodes.

3.2 Convolutional Autoencoders

The CAEs use a similar architecture to those described
in [21], where the weights for the deconvolutional layers
are “tied” and are the transpose of the weights for the
convolutional layers. The main difference with the neu-
ral networks we created is that no pooling or unpooling
layers were used. Pooling layers discard useful location
information [18], which would have prevented our system
from learning features for detecting the agent’s location.

The CAEs in Figures 3(a) and 3(b) both used two 8 x
10 kernels (one for each feature map) with a 8 x 10 stride.
It is important to point out that this neural network is
over-engineered to the 80 x 20 image problem, and one of
the kernels quickly became an accurate “agent” detector.

On the other hand, the CAEs in figures 3(c) and 3(d)
both used more general kernels. The first layer used a
5 x 5 kernel with a 3 x 3 stride, while each of the subse-
quent convolutional layers each used a 3 x 3 kernel. The
difference between SCAE-8 and SCAE-4 was the num-
ber of features maps in each. As we will discuss later,
while more feature maps gave the SCAE-8 more accu-
rate image compression, the increased feature set created

a more difficult optimization problem for the value func-
tion approximation algorithm.

4 Experiments

All of our experiments used 80 x 20 images taken from a
10 x 2 grid world as seen in Figure 1. The autoencoders
AE-10, AE-20, SAE, along with the convolutional au-
toencoders CAE and SCAE-AGENT were trained on all
20 possible images while the goal was at location (9, 1).
The convolutional autoencoders SCAE-8 and SCAE-4
were both trained on all 400 possible images by moving
both the agent and goal. The larger training data set
was used to make the kernels goal-location invariant.

The middle layer of each of these neural networks
was then used as a feature basis for Gradient Descent
SARSA(X) with v = 0.99, A = 0.5, and the value func-
tion was initialized to 1.0. The reward function was set
to —1 everywhere and the agent would terminate upon
finding the goal. Finally, the learning rate was different
for each model and is listed in Table 1. The learning
rates were obtained by setting them as high as possible
while ensuring Gradient Descent SARSA(\) converged
on a policy.

We ran the algorithm for a total of 1,000 episodes. An
episode began with the agent in a starting position and
ended when either when the agent reached the goal or
10,000 steps had been taken. As our baseline we used a
Fourier Basis function [12], which used the agent’s exact
x and y location. Because the baseline used the agent’s
known location it gave us a very high upper bound for
performance. In addition, while we chose to use Gradient
Descent SARSA()), any value function approximation
algorithm could have been used in its place.

Model Learning Rate
AE-10 0.002
AE-20 0.002
SAE 0.005

CAE 0.2

SCAE-AGENT 0.0006
SCAE-16 0.002
SCAE-32 0.005

Table 1: Learning rates for the different models.

Each trial consisted of 1,000 episodes and was run 10
times. We reported the average quantities along with
their 95% confidence interval in Figure 4. In Figures
4(a) and 4(c) the number of steps the agent took in each
learning episode is plotted. As expected this number
significantly drops off after the first few iterations for all
models except CAE. Figures 4(b) and 4(d) show the total
reward accumulated across all learning episodes. Note
that the derivative of this chart is the reward earned at
each episode.
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5 Results

As we see from Figures 4(a) and 4(b) AE-10 and AE-
20 both converged quickly upon the same optimal pol-
icy that the Fourier Basis model learned. However, the
stacked autoencoder SAE was unable to learn the opti-
mal policy and learned some other sub-optimal one in-
stead. Its sub-optimal performance is likely due to the
inability of the stacked autoencoder to learn a good deep
state representation for our 10 x 2 grid world. The fully-
connected nature of the stacked autoencoder made the
optimization problem too difficult for backpropagation
to train over our data set.

In Figures 4(c) and 4(d) we have compared all of the
convolutional autoencder models and the two best au-
toencoders AE-10 and AE-20. The CAE model outper-
formed all of them and converged to the optimal policy
almost as quickly as the Fourier Basis. This was an
impressive accomplishment given that the Fourier Basis
model had direct access to the agent’s x and y locations;
indicating that the CAE network learned a very good
deep state representation. All the other convolutional
models outperformed the autoencoders AE-10 and AE-
20, which is expected given how well convolution has
performed on computer vision related tasks.

The SCAE-AGENT and SCAE-8 models performed
worse than the CAE and CAE-4 networks, however for
different reasons. Because the SCAE-AGENT model
had a hidden layer with only 2 nodes it was harder to
train and did not achieve as low a training error as the
other convolutional models. This difficulty resulted in
a sub-par deep state representation that Gradient De-
scent SARSA () was unable to learn over. On the other
hand SCAE-8 achieved very low training loss, however
its deep state representation was large enough (its middle
layer contains 352 neurons) that it made the optimiza-
tion problem much more difficult for Gradient Descent

SARSA(N).

We also analyzed the performance of our models dur-
ing the first 100 episodes. In Figure 5 we have charted
the number of steps the different models took during this
time period. It is interesting to notice how quickly all
of these models converged. Almost all of them had the
same performance as the Fourier Basis model after only
20 episodes, and after 70 episodes they all seem to be
identical. What varies did vary is the number of steps
taken before they converge, which helps to explain the
variation we see in Figure 4(d).
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Figure 5: A closer look at the number of steps taken in
the first 100 episodes for the convolutional autoencoders.

Finally, we wanted to see how our models behaved
to changes in the goal location. As we mentioned ear-
lier, the SCAE-4 and SCAE-8 neural networks had been
trained on the full 400 image data set obtained by mov-
ing both the agent and goal, while the other models had
only been trained on the 20 images obtained by moving
only the agent. To our surprise, changing the goal’s loca-
tion (and the reward function) did not significantly affect
the performance of any of the models. This goal-location
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Figure 4: Results from using Gradient Descent SARSA () with the hidden features of several different neural network

architectures.

invariance is an interesting result and shows that the AE-
10, AE-20, CAE, and SCAE models learned features that
were able to accurately represent the agent’s location de-
spite changes in the goal-location.

6 Related Work

With the recent resurgence of deep learning there has
been significant work in combining deep learning and re-
inforcement learning. This work can be separated into
two categories: end-to-end learning and deep state rep-
resentation [1]. End-to-end learning takes a direct ap-
proach and learns a non-linear policy (value function)
directly from the input data. On the other hand, deep
state representation first finds a reduced dimension rep-
resentation for the input data, and then uses an approx-
imation technique to obtain an approximate Q-function.

While end-to-end learning results in direct policies
(without the need to find a reduced dimension state rep-
resentation) it requires a large amount of data [1]. This
requisite makes it difficult or even impossible to train
on robots or other environments where taking a large
number of samples is not possible.

6.1 End-to-End Learning

In Mnih et al. [24] the raw video feed from Atari 2600
games is fed into a convolutional network that outputs
the Q-value for each possible action. The loss function

for the aptly named Deep Q-Network is a function of the
expected Q-value for the input state. This architecture
tightly integrates deep learning and reinforcement learn-
ing and achieved super human performance on many of
the games.

The authors of Levine et al. [18] also use a convolu-
tional network, which receives a video feed from a PR2
robot and creates a controller that can be used to pick
up objects. Their network outputs a probability distri-
bution over actions, which can be used as a controller for
arobotic arm. There are several training phases, first the
convolutional layers of the network are pre-trained on vi-
sual data. Next there is a supervised training phase, in
which the robot knows the location of the object. Fi-
nally the robot attempts to use the network to pick up
and manipulate objects, the result of its actions are used
as reinforcement to update the network in an unsuper-
vised manner.

6.2 Deep State Representation

The work done by Mattner et al. [22] to balance an in-
verted pendulum, and Lange et al. [16] to control a slot-
car racer both use the Deep Fitted Q (DFQ) algorithm.
The algorithm trains an autoencoder on the frames of a
video feed that captures the entire scene. After training,
the output of the middle hidden layer was used to ap-
proximate the Q-function. Any of a plethora of function



approximation algorithms may be used to perform this
step. The DFQ algorithm is very similar to the models
presented in this paper. However our use of convolu-
tional neural networks allows us to take advantage of
image locality and obtain better deep state representa-
tions.

6.3 Recurent Neural Networks

Finally there has been some work done on using Recur-
rent Neural Networks (RNNs) to combine deep learn-
ing and reinforcement learning. One notable example
is Koutnik et al. [13] who used evolutionary algorithms
to evolve a network that was able to play the TORCS
racing game. Similar to the previous papers, the RNN
received frames from the video game and directly output
the action that should be taken.

7 Conclusions

As reinforcement learning is called upon to tackle prob-
lems that rely on larger state spaces, deep learning will
provide a useful way to perform dimensionality reduc-
tion and extract meaningful deep state representations.
Throughout this paper we have examined the current al-
gorithms and techniques that are being used to combine
deep learning and reinforcement learning. We have pre-
sented an algorithm that, similar to the DFQ algorithm
presented in Section 6.2, extracted deep state represen-
tations. One of our main contributions has been the use
of CAEs to extract deep state representations. Finally,
we tested several different architectures with Gradient
Descent SARSA(\) and reported their results.

There are several directions that this work can be
taken. While almost any function approximation algo-
rithm can be used to approximate the Q-function, it
would be interesting to see how alternatives to Gradi-
ent Descent SARSA (M) perform. In addition it would
be very useful to compare the models presented here di-
rectly to those in Mattner et al. [22] and Lange et al.
[16].

In Hafner and Riedmiller [6] an actor-critic algorithm
is presented, in which both the policy and Q-function are
represented by neural networks. Similarly, these deep
state representations could be used in a model-based al-
gorithm, where the model is also learned through deep
learning.

Despite the fact that neural networks have been used
in reinforcement learning for decades, combining rein-
forcement learning with deep learning is still a nascent
field of research. It is not clear if end-to-end training or
deep state representation is preferable, most likely each
will have their own uses — analogous to the differences
between value and policy iteration methods.
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