Affordances as Transferable Knowledge for Planning Agents

Gabriel Barth-Maron® and David Abel* and James MacGlashan and Stefanie Tellex
{ gabriel_barth-maron, david_abel, james_macglashan, stefanie_tellex } @brown.edu
Brown University, Computer Science Dept.
115 Waterman Street, 4th floor
Providence, RI1 02912-1910

Abstract

Robotic agents often map perceptual input to simplified rep-
resentations that do not reflect the complexity and richness of
the world. This simplification is due in large part to the lim-
itations of planning algorithms, which fail in large stochas-
tic state spaces on account of the well-known “curse of di-
mensionality.” Existing approaches to address this problem
fail to prevent autonomous agents from considering many ac-
tions which would be obviously irrelevant to a human solv-
ing the same problem. We formalize the notion of affordances
as knowledge added to an Markov Decision Process (MDP)
that prunes actions in a state- and reward- general way. This
pruning significantly reduces the number of state-action pairs
the agent needs to evaluate in order to act near-optimally.
We demonstrate our approach in the Minecraft domain as a
model for robotic tasks, showing significant increase in speed
and reduction in state-space exploration during planning. Fur-
ther, we provide a learning framework that enables an agent
to learn affordances through experience, opening the door for
agents to learn to adapt and plan through new situations. We
provide preliminary results indicating that the learning pro-
cess effectively produces affordances that help solve an MDP
faster, suggesting that affordances serve as an effective, trans-
ferable piece of knowledge for planning agents in large state
spaces.

Introduction

As robots move out of the lab and into the real world, plan-
ning algorithms need to scale to domains of increased noise,
size, and complexity. A classic formalization of this prob-
lem is a stochastic sequential decision making problem in
which the agent must find a policy (a mapping from states to
actions) for some subset of the state space that enables the
agent to achieve a goal from some initial state, while mini-
mizing any costs along the way. Increases in planning prob-
lem size and complexity directly correspond to an explosion
in the state-action space, restricting extensions to large state-
spaces such as robotic applications. Current approaches to
solving sequential decision making problems in the face of
uncertainty cannot tackle these problems as the state-action
space becomes too large (Grounds and Kudenko 2005).

*The first two authors contributed equally to this paper.
Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To address this state-space explosion, prior work has ex-
plored adding knowledge to the planner to solve problems
in these massive domains, such as options (Sutton, Pre-
cup, and Singh 1999) and macroactions (Botea et al. 2005;
Newton, Levine, and Fox 2005). However, these approaches
add knowledge in the form of additional high-level actions
to the agent, which increases the size of the state-action
space (while also allowing the agent to search more deeply
within the space). The resulting augmented space is even
larger, which can have the paradoxical effect of increasing
the search time for a good policy (Jong 2008). Further, other
approaches fall short of learning useful, transferable knowl-
edge, either due to complexity or lack of generalizability.

Instead, we propose a formalization of affordances (Gib-
son 1977) for MDPs that specifies which actions an agent
should consider in different kinds of states to achieve a cer-
tain kind of goal. Our approach enables an agent to focus
on aspects of the environment that are most relevant to-
ward solving its current goal and avoids exploration of irrel-
evant parts of the state-action space, which leads to dramatic
speedups in planning.

Further, we propose a learning process that enables agents
to autonomously learn affordances through experience, less-
ening the agent’s dependence on expert knowledge. Affor-
dances are not specific to a particular reward function or
state space, and provide the agent with transferable knowl-
edge that is effective in a wide variety of problems. We call
any planner that uses affordances an affordance-aware plan-
ner.

Because affordances define the kind of goals for which ac-
tions are useful, affordances also enable high-level reason-
ing that can be combined with approaches like high-level
subgoal planning for even greater performance gains. In our
current model, ideal subgoals are given directly to planning
agents by an expert - however, we are interested in automati-
cally discovering subgoals in an online way, a task which has
already enjoyed some success (Mcgovern and Barto 2001;
Simsek, Wolfe, and Barto 2005).

This paper contains significant material from our previ-
ously published workshop paper (Abel et al. 2014). It fo-
cuses more on the robotics applications of our framework.

Minecraft

We use Minecraft as our planning and evaluation domain.
Minecraft is a 3-D blocks world game in which the user
can place and destroy blocks of different types. It serves
as a model for a variety of robotic tasks involving assem-
bly and construction. Minecraft’s physics and action space
are expressive enough to allow very complex systems to be
created by users, including logic gates and functional scien-
tific graphing calculators'; simple scenes from a Minecraft
world appear in Figure 1 - a video demonstration of an
affordance-aware planner solving this task may be seen on-
line?. Minecraft serves as a model for robotic tasks such as
cooking assistance, assembling items in a factory, and object
retrieval. As in these tasks, the agent operates in a very large
state-action space in an uncertain environment.

Minecraft is also an effective parallel for the actual world,
both in terms of approximating the complexity and scope
of planning problems, as well as modeling the uncertainty
and noise presented to a robotic agent. For instance, robotic
agents are prone to uncertainty throughout their system,
including noise in their sensors (cameras, LIDAR, micro-
phones, etc.), odometry, control, and actuation. In order to
accurately capture some of the inherent difficulties of plan-
ning under uncertainty, the Minecraft agent’s actions were
modified to have stochastic outcomes. These stochastic out-
comes may require important changes in the optimal pol-
icy in contrast to deterministic actions, such as keeping the
agent’s distance from high cost areas of the state-space, such
as lava or cliffs.

We chose to give the Minecraft agent perfect sensor data
about the Minecraft world. However, affordances typically
relate to the agent’s immediate surroundings, so limiting the
perceptual scope should not impede the performance gains
of affordances. We have considered extensions to Partially
Observable domains, though at a distance solving a POMDP
is effectively unchanged by the presence of affordances (be-
yond the performance gains provided by pruning actions).

Object-Oriented Markov Decision Processes
(OO-MDPs)

We define affordances in terms of propositional functions on
states. Our definition builds on the OO-MDP (Diuk, Cohen,
and Littman 2008). OO-MDPs are an extension of the clas-
sic MDP. A classic MDP is a five-tuple: (S, A, T,R,7),
where S is a state-space; A is the agent’s set of actions; T
denotes 7 (s’ | s,a), the transition probability of an agent
applying action a € A in state s € S and arriving in s’ € S;
R(s,a,s") denotes the reward received by the agent for ap-
plying action a in state s and and transitioning to state s’;
and «y € [0, 1) is a discount factor that defines how much the
agent prefers immediate rewards over distant rewards (the
agent more greatly prefers to maximize more immediate re-
wards as vy decreases).

A classic way to provide a factored representation of an
MDP state is to represent each MDP state as a single fea-
ture vector. By contrast, an OO-MDP represents the state

Uhttps://www.youtube.com/watch?v=wgIJfVRhotlQ
>Watch at: https://vimeo.com/88689171

space as a collection of objects, O = {oy,...,0,}. Each
object o; belongs to a class ¢; € {c1,...,c.}. Every class
has a set of attributes Att(c) = {c.a1,...,c.aq}, each of

which has a domain Dom/(c.a) of possible values. Upon
instantiation of an object class, its attributes are given a
state o.state (an assignment of values to its attributes). The
underlying MDP state is the set of all the object states:
s €8 =U2_{o;.state}.

There are two advantages to using an object-oriented fac-
tored state representation instead of a single feature vector.
First, different states in the same state space may contain dif-
ferent numbers of objects of varying classes, which is useful
in domains like Minecraft in which the agent can dynam-
ically add and remove blocks to the world. Second, MDP
states can be defined invariantly to the specific object ref-
erences. For instance, consider a Minecraft world with two
block objects, by and bs. If the agent picked up and swapped
the position of b; and bs, the MDP state before the swap and
after the swap would be the same, because the MDP state
definition is invariant to which object holds which object
state. This object reference invariance results in a smaller
state space compared to representations like feature vectors
in which changes to value assignments always result in a
different state.

While the OO-MDP state definition is a good fit for the
Minecraft domain, our motivation for using an OO-MDP
lies in the ability to formulate predicates over classes of ob-
jects. That is, the OO-MDP definition also includes a set of
predicates P that operate on the state of objects to provide
additional high-level information about the MDP state.

While an OO-MDP reduces the size of the Minecraft state
space by a significant factor, the resulting state space is still
far too large to solve with any existing (OO)-MDP solver.
This is the primary motivator for incorporating affordances
- to reduce the amount of the state space that an OO-MDP
agent will have to explore.

The Brown UMBC Reinforcement Learning And Plan-
ning framework (BURLAP?) is working toward integrating
planning and reinforcement learning algorithms with a va-
riety of planning domains, represented as an OO-MDP, in-
cluding ROS. In this way, transferable knowledge like affor-
dances can be quickly deployed to domains like Mountain
Car (Moore and Hall 1990) and Minecraft, but also to a va-
riety of Robots that utilize ROS. Our group is also working
to deploy affordances as a means of knowledge representa-
tion and reasoning for collaborative cooking with ReThink’s
Baxter.

Related Work

In this section, we discuss the differences between
affordance-aware planning and other forms of knowledge
that have been used to accelerate planning.

Temporarily Extended Actions

Temporally extended actions are actions that the agent can
select like any other action of the domain, except executing
them results in multiple primitive actions being executed in

*http://burlap.cs.brown.edu/

succession. Two common forms of temporally extended ac-
tions are macro-actions (Hauskrecht et al. 1998) and op-
tions (Sutton, Precup, and Singh 1999). Macro-actions are
actions that always execute the same sequence of primitive
actions. Options are defined with high-level policies that ac-
complish specific sub tasks. For instance, when an agent is
near a door, the agent can engage the ‘door-opening-option-
policy’, which switches from the standard high-level planner
to running a policy that is hand crafted to open doors.

Although the classic options framework is not generaliz-
able to different state spaces, creating portable options is a
topic of active research (Konidaris and Barto 2007; 2009;
Ravindran and Barto 2003; Croonenborghs, Driessens, and
Bruynooghe 2008; Andre and Russell 2002; Konidaris,
Scheidwasser, and Barto 2012).

Given the potential for unhelpful temporally extended ac-
tions to negatively impact planning time (Jong 2008), we
believe combing affordances with temporally extended ac-
tions may be especially valuable because it will restrict the
set of temporally extended actions to those useful for a task.
In the future, we plan to explore the benefit from combining
these approaches.

Action Pruning

Sherstov and Stone (Sherstov and Stone 2005) considered
MDPs with a very large action set and for which the action
set of the optimal policy of a source task could be trans-
ferred to a new, but similar, target task to reduce the learn-
ing time required to find the optimal policy in the target
task. The main difference between our affordance-based ac-
tion set pruning and this action transfer work is that affor-
dances prune away actions on a state by state basis, where
as the learned action pruning is on per task level. Further,
with lifted goal descriptions, affordances may be attached to
subgoal planning for a significant benefit in planning tasks
where complete subgoal knowledge is known.

Rosman and Ramamoorthy (Rosman and Ramamoorthy
2012) provide a method for learning action priors over a set
of related tasks. Specifically, they compute a Dirichlet dis-
tribution over actions by extracting the frequency that each
action was optimal in each state for each previously solved
task.

There are a few limitations of the actions priors work that
affordance-aware planning does not possess: (1) the action
priors can only be used with planning/learning algorithms
that work well with an e-greedy rollout policy; (2) the pri-
ors are only utilized for fraction ¢ of the time steps, which
is typically quite small; and (3) as variance in tasks ex-
plored increases, the priors will become more uniform. In
contrast, affordance-aware planning can be used in a wide
range of planning algorithms, benefits from the pruned ac-
tion set in every time step, and the affordance defined lifted
goal-description enables higher-level reasoning such as sub-
goal planning.

Temporal Logic

Bacchus and Kabanza (Bacchus and Kabanza 1995; 1999)
provided planners with domain dependent knowledge in the
form of a first-order version of linear temporal logic (LTL),

which they used for control of a forward-chaining planner.
With this methodology, STRIPS style planner may be guided
through the search space by checking whether candidate
plans do not falsify a given knowledge base of LTL formu-
las, often achieving polynomial time planning in exponential
space.

The primary difference between this body of work
and affordance-aware planning is that affordances may be
learned (increasing autonomy of the agent), while LTL for-
mulas are far too complicated to learn effectively, placing
dependence on an expert.

Heuristics

Heuristics in MDPs are used to convey information about
the value of a given state-action pair with respect to the task
being solved and typically take the form of either value func-
tion initialization, or reward shaping. Initializing the value
function to an admissible close approximation of the opti-
mal value function has been shown to be effective for LAO*
and RTDP (Hansen and Zilberstein 1999).

Reward shaping is an alternative approach to providing
heuristics. The planning algorithm uses a modified version
of the reward function that returns larger rewards for state-
action pairs that are expected to be useful, but does not guar-
antee convergence to an optimal policy unless certain prop-
erties of the shaped reward are satisfied (Ng, Harada, and
Russell 1999).

A critical difference between heuristics and affordances
is that heuristics are highly dependent on the reward func-
tion and state space of the task being solved, whereas affor-
dances are state space independent and transferable between
different reward functions. However, if a heuristic can be
provided, the combination of heuristics and affordances may
even more greatly accelerate planning algorithms than either
approach alone.

Affordances

We define an affordance A as the mapping (p, g) — A/,
where:

A" C A, a subset of the action space, representing the
relevant action-possibilities of the environment.

p is a predicate on states, s — {0, 1} representing the
precondition for the affordance.

g is an ungrounded predicate on states representing a
lifted goal description.

The precondition and goal description refer to predicates
that are defined in the OO-MDP definition. We call an af-
fordance activated when its predicate is true and its lifted
goal description g matches the agent’s current goal. Using
OO-MDP predicates for affordance preconditions and goal
descriptions allows for state space independence. Thus, a
planner equipped with affordances can be used in any num-
ber of different environments. For instance, the affordances
defined for Minecraft navigation problems can be used in
any task regardless of the spatial size of the world, number
of blocks in the world, and specific goal location that needs
to be reached.

(b) Destroy Wall

(c) Collect Ore (d) Smelt Ore

Figure 1: Affordance-aware Real-Time Dynamic Programming (RTDP) tasked with a gold-smelting task with a variety of

obstacles (only solved by an affordance-aware planner)

(s)
\T/
3 N
v Ao
— =
(n))
N~ /
‘\4/ K
/l\
A

Figure 2: The full graphical model approximating a distribu-
tion over .A*, the pruned action set for a given state s

Affordance-Aware Planning

We call any planner that uses affordances an affordance-
aware planner. For a given state, our goal is to solve for the
probability of getting a particular action set .4*, and approx-
imate sampling from this distribution. This ensures that in
the limit, it is possible to apply each action in each state. A*
represents a drawn action subset from the OO-MDP action
set that is likely to contain the optimal action(s) for a given
state, but not suboptimal actions.

PI‘(.A* | S,Al...AK) (1)

We let each affordance contribute a set A’ C A* in each
state:

Pr(AjU...UAY | s,A1...Ak))

We approximate this term assuming the sets A} are disjoint:
K
D Pr(A] | s,A) 3)

Given a set of K domain affordances Z = {Aq, ..., A}
and a current agent goal condition defined with an OO-MDP
predicate G, the action set that a planning algorithm consid-
ers is pruned on a state by state basis as shown in Algo-
rithm 1. Each activated affordance contributes a suggested
action set, determined by Algorithm 2.

Specifically, we prune actions on a state by state basis by
initializing an empty set of actions .A* (line 1). The algo-
rithm then iterates through each of the domain affordances

(lines 2-6). If the affordance precondition (A.p) is satisfied
by some set of objects in the current state and the affordance
goal condition (A.g) is defined with the same predicate as
the current goal (line 3), then the actions associated with the
affordance (A.A" = A.get Actions(s)) are added to the ac-
tion set A* (line 4). Finally, A* is returned (line 7).

Algorithm 1 getActionsForState(state, Z, G)
A+ {}
2: for A € Z do
3: if A.p(state) and A.g = G then
4: A* — A* U A.getActions(s)
5 end if
6: end for
7: return A*

For each affordance, we get an action set .A’. This pro-
cess is outlined by Algorithm 2. To compute A’, we form
a Dirichlet-multinomial distribution over actions (), and a
Dirichlet distribution over the size (V) of each action set.
Therefore, the probability of getting an action set from af-
fordance ¢ in state s is:

Pr(A; | s,A,) = Pr(A] | N,) = Pr(A |)Pr(N | §) (4

For a given affordance A;, first we sample from our distri-
bution over action set size to get a candidate action set size
(lines 1-2). We then take that many samples from our dis-
tribution over actions to get a candidate action set A’ (lines
3-5).

Pr(A | &) = DirMult(o))
Pr(N | B) = Dir(B) ©)

Algorithm 2 A;.get Actions(s)
1: A« DirMult(A;.«)
for 1 to N do
Ai..A/ — A
end for
return A;.. A’

AN A

Through the use of Algorithms 1 & 2, any OO-MDP
solver can be made affordance-aware. For a planner to
be made affordance-aware, we require that an expert pro-
vide a set P of predicates for the domain of relevance
(i.e. Minecraft). Additionally, the expert must specify a set
G C P that indicates which predicates may serve as goal
conditions. If the expert wishes to provide the affordances
directly, they must specify the Dirichlet parameters o and S.
Note that in the limit, the expert may fix « and S in a way
that forces a given affordance to always suggest a specific set
of actions - all expert affordances given during experiments
were provided in this form.

Learning Affordances

A strength of our affordance formalism is that it is simple
to learn useful affordances directly. Furthermore, since af-
fordances are not dependent on a specific reward function
or state-space, affordances learned during training may be
transferred to a wide variety of different tasks. This means
that a single set of learned affordances could aid a robot in
many different applications. Given the set of predicates P
and possible goals G C P, we form a set of candidate af-
fordances A with every combination of (p, g), for p € P
and g € G. To learn the action set for each of these candi-
date affordances, we propose a scaffolded learning process
that computes « and 3 from the solved policy of m goal-
annotated OO-MDPs that have small state spaces (small
enough to be solved using tabular method), but still present
similar sorts of features to the state spaces the agent might
expect to see in more complex environments.

For each optimal policy, we count the number of policies
that used each action when each affordance was activated.
« is set to this count. Additionally, we define 3 as a vector
of the integers 1 to |.A|. Then, for each optimal policy, we
count the number of different actions that were optimal for
each activated affordance 4\;, and increment that value for
A;.3. This captures how large or small optimal action sets
are expected to be for each affordance.

Experiments

We conducted a series of experiments in the Minecraft do-
main that compared the performance of several OO-MDP
solvers without affordances to their affordance-aware coun-
terparts. We selected the expert affordances from our back-
ground knowledge of the domain and specified them so that
each affordance always mapped to the same set of actions.

For the expert affordances, we gave the agent a knowledge
base of 5 types of affordances, which are listed in Figure
3. Our experiments consisted of a variety of common tasks
(state spaces 1-7 in Table 1) in Minecraft, ranging from basic
path planning, to smelting gold, to opening doors and tun-
neling through walls. We also tested each planner on worlds
of varying size and difficulty to demonstrate the scalability
and flexibility of the affordance formalism.

Additionally, we tested our learning procedure with a
set of 17 predicates*, and compared the performance of

“Examples of which are: is there a plane in front of the agent
and is there a destructible wall behind the agent.

Al = (nearTrench,reachGoal) — {place, jump}
= (onPlane, reachGoal) — {move}

Ag = (nearWall, reachGoal) — {destroy}

Ay = (near Furnace, makeGold) — {place}

As = (nearOre, makeGold) — {destroy}

Figure 3: The five affordance types used in expert experi-
ments.

RTDP solving the OO-MDP with (1) No affordances, (2)
Learned affordances, and (3) Expert provided affordances.
The training data consisted of 1000 simple state spaces, each
a 3 x 3 x 3 world with randomized features that mirrored the
agent’s actual state space. The same training data was used
for each test state space.

The evaluation metric for each trial was the number of
Bellman updates that were executed by each planning algo-
rithm. Value Iteration (VI) was terminated when the maxi-
mum change in the value function was less than 0.01. RTDP
terminated when the maximum change in the value function
was less than 0.01 for five consecutive policy rollouts. In
subgoal planning, we gave the agent a set of candidate sub-
goals for each task. From these subgoals, the high-level sub-
goal plan was solved using breadth-first search, which only
took a small fraction of the time compared to the total low-
level planning and therefore is not reported. In future work,
we hope to explore automatic discovery of useful subgoals
to further reduce the amount of knowledge given by an ex-
pert and to increase the effectiveness of affordances.

We set the reward function to —1 for all transitions, except
transitions to states in which the agent was on lava, which re-
turned —200. The goal was set to be terminal. The discount
factor was set to A = 0.99. For all experiments, actions as-
sociated with a direction (e.g. movement, block placement,
jumping, etc.), had a small probability (0.3) of moving in
another random direction.

Lastly, we conducted experiments in which we varied the
number of training worlds used in the learning process from
0-1000 to demonstrate that planning performance improves
with more training data. As in Table 2, we generated O to
1000 simple state spaces, each a 3 x 3 x 3 world with ran-
domized features that mirrored the agent’s actual state space.
We then solved the OO-MDP with training data of 0 to 1000
simple state spaces to demonstrate the effectiveness of added
training data.

Results

Table 1 shows the number of Bellman updates required when
solving the OO-MDP with conventional methods (left col-
umn) compared to solving the OO-MDP with an affordance-
aware method (right column). The affordance-aware meth-
ods significantly outperformed their unaugmented counter-
parts in all of these experiments. These results, while un-
surprising, concretely demonstrate that a small set of affor-
dances prune away many useless actions across many differ-
ent types of Minecraft tasks.

State Space | VI A-VI | RTDP A-RTDP | SG A-SG
71604 100 836 152 1373 141

413559 366 | 4561 392 28185 547
1439883 904 | 18833 788 15583 1001
861084 4368 | 12207 1945 6368 1381
413559 366 | 4425 993 25792 597
203796 105 | 26624 145 5404 182

16406 962 | 7738 809 7412 578

~N oUW

Table 1: Expert Affordance Results: Avg. Number of Bell-
man Updates per converged policy. Where SG refers to the
subgoal planner, and the “A-" prefix indicates the use of an
affordance-aware planner.

State Space || No Affordances Learned Expert

Tiny 879 414 94

Small 1460 802 321
Medium 3993 2412 693
Large 8344 5100 1458

Table 2: Learned Affordance Results: Avg. Number of Bell-
man Updates per converged policy

Table 2 indicates the average number of Bellman updates
required by RTDP to solve the OO-MDP in each of the four
candidate worlds. The learned affordances clearly improved
on standard RTDP by a significant margin, though there is
clearly still room to improve the learning process to ap-
proach learned affordances that are near-expert level.

Figure 4 demonstrates the added effect of more training
data. In these experiments, we tested on map types that
mirrored the features of the worlds generated during train-
ing, but this process could be extended to allow for scaf-
folded learning and more complicated maps (such as the
gold smelting task in Figure 1). The averages reported are
from solving the OO-MDP 20 times for each world, with
each knowledge base. There was a negligible difference in
the quality of the policies generated.

Average # Bellman Updates
Per Converged Policy
1000
Learned Affordances

-+ Expert Affordances

750

250

0 100 200 300 400 500 600 700 800 900 1000

Number of Generated Training Worlds

Figure 4: The effectiveness of added training data on plan-
ning performance.

Conclusion

We proposed a novel approach to representing transferable
knowledge in terms of affordances (Gibson 1977) that al-
lows an agent to efficiently prune its action space based
on domain knowledge, providing a significant reduction in
the number of state-action pairs the agent needs to evalu-
ate in order to act near-optimally. We demonstrated the ef-
fectiveness of the affordance model by comparing standard
paradigm planners to their affordance-aware equivalents in
a series of challenging planning tasks in the Minecraft do-
main, a domain that is an apt model for many robotic tasks.
Further, we designed a full learning process that allows an
agent to autonomously learn useful affordances that may be
used across a variety of task types, reward functions, and
state-spaces, allowing for convenient extensions to robotic
applications. We provided preliminary results indicating the
effectiveness of the learned affordances, suggesting that the
agent may be able to learn to tackle new types of problems
on its own.

In the future, we hope to increase our coverage of
Minecraft to solve even more difficult planning problems,
and apply this approach beyond the Minecraft domain and
onto actual robots and other domains of interest. Addition-
ally, in certain cases, we provide the agent with extensive
state-space-specific subgoal knowledge that is essential in
solving some difficult planning problems. We hope to au-
tomatically discover useful subgoals - a topic of some ac-
tive research (Mcgovern and Barto 2001; Simgek, Wolfe,
and Barto 2005). This will allow for affordances to reduce
the size of the explored state-action space without requiring
knowledge from an expert, increasing transferability across
task types.

References

Abel, D.; Barth-Maron, G.; MacGlashan, J.; and Tellex, S.
2014. Toward affordance-aware planning. In First Work-
shop on Affordances: Affordances in Vision for Cognitive
Robotics.

Andre, D., and Russell, S. 2002. State abstraction for pro-
grammable reinforcement learning agents. In Eighteenth na-
tional conference on Artificial intelligence, 119-125. Amer-
ican Association for Artificial Intelligence.

Bacchus, F., and Kabanza, F. 1995. Using temporal logic to
control search in a forward chaining planner. In In Proceed-
ings of the 3rd European Workshop on Planning, 141-153.
Press.

Bacchus, F., and Kabanza, F. 1999. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116:2000.

Botea, A.; Enzenberger, M.; Miiller, M.; and Schaeffer, J.
2005. Macro-ff: Improving ai planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research 24:581-621.

Croonenborghs, T.; Driessens, K.; and Bruynooghe, M.
2008. Learning relational options for inductive transfer in
relational reinforcement learning. Inductive Logic Program-
ming 88-97.

Simsek, O.; Wolfe, A. P.; and Barto, A. G. 2005. Identify-
ing useful subgoals in reinforcement learning by local graph
partitioning. In Proceedings of the 22Nd International Con-
ference on Machine Learning, ICML °05, 816-823. New
York, NY, USA: ACM.

Diuk, C.; Cohen, A.; and Littman, M. 2008. An object-
oriented representation for efcient reinforcement learning.
In Proceedings of the 25th international conference on Ma-
chine learning, ICML *08.

Gibson, J. 1977. The concept of affordances. Perceiving,
acting, and knowing 67-82.

Grounds, M., and Kudenko, D. 2005. Combining reinforce-
ment learning with symbolic planning. In Proceedings of
the 5th, 6th and 7th European conference on Adaptive and
learning agents and multi-agent systems: adaptation and
multi-agent learning, ALAS °05.

Hansen, E. A., and Zilberstein, S. 1999. Solving markov
decision problems using heuristic search. In Proceedings of
AAAI Spring Symposium on Search Techniques from Prob-
lem Solving under Uncertainty and Incomplete Information.

Hauskrecht, M.; Meuleau, N.; Kaelbling, L. P.; Dean, T.; and
Boutilier, C. 1998. Hierarchical solution of markov decision
processes using macro-actions. In Proceedings of the Four-

teenth conference on Uncertainty in artificial intelligence,
220-229. Morgan Kaufmann Publishers Inc.

Jong, N. K. 2008. The utility of temporal abstraction in
reinforcement learning. In Proceedings of the Seventh Inter-
national Joint Conference on Autonomous Agents and Mul-
tiagent Systems.

Konidaris, G., and Barto, A. 2007. Building portable op-
tions: Skill transfer in reinforcement learning. In Proceed-

ings of the International Joint Conference on Artificial Intel-
ligence, IICAI °07, 895-900.

Konidaris, G., and Barto, A. 2009. Efficient skill learning
using abstraction selection. In Proceedings of the Twenty
First International Joint Conference on Artificial Intelli-
gence, 1107-1112.

Konidaris, G.; Scheidwasser, I.; and Barto, A. 2012. Trans-
fer in reinforcement learning via shared features. The Jour-
nal of Machine Learning Research 98888:1333—-1371.

Mcgovern, A., and Barto, A. G. 2001. Automatic discovery
of subgoals in reinforcement learning using diverse density.
In In Proceedings of the eighteenth international conference
on machine learning, 361-368. Morgan Kaufmann.

Moore, A. W., and Hall, T. 1990. Efficient memory-based
learning for robot control. Technical report, University of
Cambridge, Computer Laboratory.

Newton, M.; Levine, J.; and Fox, M. 2005. Genetically
evolved macro-actions in ai planning problems. Proceedings
of the 24th UK Planning and Scheduling SIG 163-172.

Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invari-
ance under reward transformations: Theory and application
to reward shaping. In ICML, volume 99, 278-287.

Ravindran, B., and Barto, A. 2003. An algebraic approach to
abstraction in reinforcement learning. In Twelfth Yale Work-
shop on Adaptive and Learning Systems, 109-144.

Rosman, B., and Ramamoorthy, S. 2012. What good
are actions? accelerating learning using learned action pri-
ors. In Development and Learning and Epigenetic Robotics
(ICDL), 2012 IEEE International Conference on, 1-6.
IEEE.

Sherstov, A., and Stone, P. 2005. Improving action selection
in mdp’s via knowledge transfer. In Proceedings of the 20th
national conference on Artificial Intelligence, 1024—1029.
AAAI Press.

Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence 112(1):181—
211.

