
Affordance-Aware Planning
David Abel & Gabriel Barth-Maron, James MacGlashan, Stefanie Tellex

Department of Computer Science, Brown University
{dabel,gabrielbm,jmacglashan,stefie10}@cs.brown.edu

Abstract—Planning algorithms for non-deterministic domains
are often intractable in large state spaces due to the well-known
“curse of dimensionality.” Existing approaches to address this
problem fail to prevent the planner from considering many
actions which would be obviously irrelevant to a human solving
the same problem. We formalize the notion of affordances [7] as
knowledge added to an MDP that prunes actions in a state-
and reward- general way. This pruning significantly reduces
the number of state-action pairs the agent needs to evaluate in
order to act optimally. We demonstrate our approach in the
Minecraft domain, showing significant increase in speed and
reduction in state-space exploration during planning. Further,
we provide a learning framework that enables an agent to learn
affordances through experience, removing the agent’s dependence
on the expert. We provide preliminary results indicating that the
learning process effectively produces affordances that help solve
an MDP faster.

I. INTRODUCTION

As robots move out of the lab and into the real world, plan-
ning algorithms need to scale to domains of increased noise,
size, and complexity. A classic formalization of this problem
is a stochastic sequential decision making problem in which
the agent must find a policy (a mapping from states to actions)
for some subset of the state space that enables the agent to
achieve a goal from some initial state, while minimizing any
costs along the way. Increases in planning problem size and
complexity directly correspond to an explosion in the state-
action space. Current approaches to solving sequential decision
making problems in the face of uncertainty cannot tackle these
problems as the state-action space becomes too large [8].

To address this state-space explosion, prior work has ex-
plored adding knowledge to the planner to solve problems in
these massive domains, such as options [20] and macroac-
tions [4, 15]. However, these approaches add knowledge in
the form of additional high-level actions to the agent, which
increases the size of the state-action space (while also allowing
the agent to search more deeply within the space). The
resulting augmented space is even larger, which can have the
paradoxical effect of increasing the search time for a good
policy [11]. Further, other approaches fall short of learning
useful, transferable knowledge, either due to complexity or
lack of generalizability.

Instead, we propose a formalization of affordances [7]
for Markov Decision Processes (MDPs) that specifies which
actions an agent should consider in different kinds of states
to achieve a certain kind of goal. Our approach enables an
agent to focus on aspects of the environment that are most
relevant toward solving its current goal and avoids exploration

of irrelevant parts of the state-action space, which leads to
dramatic speedups in planning.

Further, we propose a learning process that enables agents to
autonomously learn affordances through experience, lessening
the agent’s dependence on expert knowledge. Affordances are
not specific to a particular reward function or state space, and
provide the agent with transferable knowledge that is effective
in a wide variety of problems. We call any planner that uses
affordances an affordance-aware planner.

Because affordances define the kind of goals for which
actions are useful, affordances also enable high-level reasoning
that can be combined with approaches like high-level subgoal
planning for even greater performance gains. For now, we
chose to ignore approaches to affordances that emphasize
direct perception of affordances in the environment, and in-
stead emphasize an affordance’s role as a means of guiding
a planning agent through large stochastic state spaces. We
foresee future methods that bring together affordance-aware
planners with approaches to affordances in the perception
and sensing pipeline to endow robotic agents with substantial
reasoning and sensing capabilities.

II. BACKGROUND

We use Minecraft as our planning and evaluation domain.
Minecraft is a 3-D blocks world game in which the user can
place and destroy blocks of different types. Minecraft’s physics
and action space is expressive enough to allow very complex
worlds to be created by users, such as a functional scientific
graphing calculator1; simple scenes from a Minecraft world
appear in Figure 1 - a video demonstration of an affordance-
aware planner solving this task may be seen online2. Minecraft
serves as a model for robotic tasks such as cooking assistance,
assembling items in a factory, and object retrieval. As in these
tasks, the agent operates in a very large state-action space in
an uncertain environment.

Minecraft is also an effective parallel for the actual world,
both in terms of approximating the complexity and scope of
planning problems, as well as modeling the uncertainty and
noise presented to a real world agent. For instance, robotic
agents are prone to uncertainty throughout their system, in-
cluding noise in their sensors (cameras, LIDAR, microphones,
etc.), odometry, control, and actuation. In order to accurately
capture some of the inherent difficulties of planning under
uncertainty, the Minecraft agent’s actions were modified to

1https://www.youtube.com/watch?v=wgJfVRhotlQ
2Watch at: https://vimeo.com/88689171

(a) Start (b) Destroy Wall (c) Collect Ore (d) Smelt Ore

Fig. 1. Affordance-aware RTDP tasked with a gold-smelting task with a variety of obstacles (only solved by an affordance-aware planner)

have stochastic outcomes. These stochastic outcomes may
require important changes in the optimal policy in contrast
to deterministic actions, such as keeping the agent’s distance
from high cost areas of the state-space, such as lava.

We chose to give the Minecraft agent perfect sensor data
about the Minecraft world. However, affordances typically
relate to the agent’s immediate surroundings, so limiting the
perceptual scope should not impede the performance gains of
affordances.

A. OO-MDPs

We define affordances in terms of propositional functions
on states. Our definition builds on the Object-Oriented Markov
Decision Process (OO-MDP) [6]. OO-MDPs are an extension
of the classic Markov Decision Process (MDP). A classic MDP
is a five-tuple: 〈S,A, T ,R, γ〉, where S is a state-space; A
is the agent’s set of actions; T denotes T (s′ | s, a), the
transition probability of an agent applying action a ∈ A in
state s ∈ S and arriving in s′ ∈ S; R(s, a, s′) denotes the
reward received by the agent for applying action a in state s
and and transitioning to state s′; and γ ∈ [0, 1) is a discount
factor that defines how much the agent prefers immediate
rewards over distant rewards (the agent more greatly prefers
to maximize more immediate rewards as γ decreases).

A classic way to provide a factored representation of an
MDP state is to represent each MDP state as a single feature
vector. By contrast, an OO-MDP represents the state space
as a collection of objects, O = {o1, . . . , oo}. Each object oi
belongs to a class cj ∈ {c1, . . . , cc}. Every class has a set
of attributes Att(c) = {c.a1, . . . , c.aa}, each of which has
a domain Dom(c.a) of possible values. Upon instantiation
of an object class, its attributes are given a state o.state (an
assignment of values to its attributes). The underlying MDP
state is the set of all the object states: s ∈ S = ∪oi=1{oi.state}.

There are two advantages to using an object-oriented fac-
tored state representation instead of a single feature vector.
First, different states in the same state space may contain
different numbers of objects of varying classes, which is useful
in domains like Minecraft in which the agent can dynamically
add and remove blocks to the world. Second, MDP states can
be defined invariantly to the specific object references. For
instance, consider a Minecraft world with two block objects,
b1 and b2. If the agent picked up and swapped the position

of b1 and b2, the MDP state before the swap and after the
swap would be the same, because the MDP state definition is
invariant to which object holds which object state.

While the OO-MDP state definition is a good fit for the
Minecraft domain, our motivation for using an OO-MDP
lies in the ability to formulate predicates over classes of
objects. That is, the OO-MDP definition also includes a set
of predicates P that operate on the state of objects to provide
additional high-level information about the MDP state.

While an OO-MDP reduces the size of the Minecraft state
space by a significant factor, the resulting state space is still
far too large to solve with any existing (OO)-MDP solver.
This is the primary motivator for incorporating affordances -
to reduce the amount of the state space that an OO-MDP agent
will have to explore.

III. AFFORDANCES

We define an affordance ∆ as the mapping 〈p, g〉 7−→ A′,
where:

A′ ⊆ A, a subset of the action space, representing the
relevant action-possibilities of the environment.
p is a predicate on states, s −→ {0, 1} representing the
precondition for the affordance.
g is an ungrounded predicate on states representing a
lifted goal description.

The precondition and goal description refer to predicates that
are defined in the OO-MDP definition. We call an affordance
activated when its predicate is true and its lifted goal de-
scription g matches the agent’s current goal. Using OO-MDP
predicates for affordance preconditions and goal descriptions
allows for state space independence. Thus, a planner equipped
with affordances can be used in any number of different envi-
ronments. For instance, the affordances defined for Minecraft
navigation problems can be used in any task regardless of the
spatial size of the world, number of blocks in the world, and
specific goal location that needs to be reached.

A. Affordance-Aware Planning

We call any planner that uses affordances an affordance-
aware planner. For a given state, our goal is to solve for
the probability of getting a particular action set A∗, and
approximate sampling from this distribution. This ensures that
in the limit, it is possible to apply each action in each state.

Fig. 2. The full graphical model approximating a distribution over A∗, the
pruned action set for a given state s

A∗ represents a drawn action subset from the OO-MDP action
set that is likely to contain the optimal action(s) for a given
state, but not suboptimal actions.

Pr(A∗ | s,∆1 . . .∆K) (1)

We let each affordance contribute a set A′ ⊆ A∗ in each state:

Pr(A′1 ∪ . . . ∪ A′K | s,∆1 . . .∆K) (2)

We approximate this term assuming the sets A′i are disjoint:

K∑
i

Pr(A′i | s,∆i) (3)

Given a set of K domain affordances Z = {∆1, ...,∆K}
and a current agent goal condition defined with an OO-MDP
predicate G, the action set that a planning algorithm considers
is pruned on a state by state basis as shown in Algorithm 1.
Each activated affordance contributes a suggested action set,
determined by Algorithm 2.

Algorithm 1 getActionsForState(state, Z, G)
1: A∗ ← {}
2: for ∆ ∈ Z do
3: if ∆.p(state) and ∆.g = G then
4: A∗ ← A∗ ∪∆.getActions(s)
5: end if
6: end for
7: return A∗

Specifically, we prune actions on a state by state basis by
initializing an empty set of actions A∗ (line 1). The algorithm
then iterates through each of the domain affordances (lines 2-
6). If the affordance precondition (∆.p) is satisfied by some
set of objects in the current state and the affordance goal
condition (∆.g) is defined with the same predicate as the
current goal (line 3), then the actions associated with the
affordance (∆.A′ = ∆.getActions(s)) are added to the action
set A∗ (line 4). Finally, A∗ is returned (line 7).

For each affordance, we get an action set A′. This process is
outlined by Algorithm 2. To compute A′, we form a Dirichlet-
multinomial distribution over actions (λ), and a Dirichlet
distribution over the size (N) of each action set. Therefore,

the probability of getting an action set from affordance i in
state s is:

Pr(A′i | s,∆i) = Pr(A′i | N,λ) = Pr(λ | α) · Pr(N | β) (4)

For a given affordance ∆i, first we sample from our distribu-
tion over action set size to get a candidate action set size (lines
1-2). We then take that many samples from our distribution
over actions to get a candidate action set A′ (lines 3-5).

Pr(λ | α) = DirMult(α) (5)
Pr(N | β) = Dir(β) (6)

Algorithm 2 ∆i.getActions(s)

1: λ← DirMult(∆i.α)
2: N ← Dir(∆i.β)
3: for 1 to N do
4: ∆i.A′ ← λ
5: end for
6: return ∆i.A′

Through the use of Algorithms 1 & 2, any OO-MDP solver
can be made affordance-aware. For a planner to be made
affordance-aware, we require that an expert provide a set P
of predicates for the domain of relevance (i.e. Minecraft).
Additionally, the expert must specify a set G ⊂ P that
indicates which predicates may serve as goal conditions. If the
expert wishes to provide the affordances directly, they must
specify the Dirichlet parameters α and β. Note that in the
limit, the expert may fix α and β in a way that forces a given
affordance to always suggest a specific set of actions - this
type of expert affordance was given for all experiments.

B. Learning Affordances

A strength of our affordance formalism is that it is simple to
learn useful affordances directly. Given the set of predicates
P and possible goals G ⊂ P , we form a set of candidate
affordances ∆ with every combination of 〈p, g〉, for p ∈ P
and g ∈ G. To learn the action set for each of these candidate
affordances, we propose a scaffolded learning process that
computes α and β from the solved policy of m goal-annotated
OO-MDPs that have small state spaces, but still present similar
sorts of features to the state spaces the agent might expect to
see in more complex environments.

For each optimal policy, we count the number of policies
that used each action when each affordance was activated.
α is set to this count. Additionally, we define β as a vector
of the integers 1 to |A|. Then, for each optimal policy, we
count the number of different actions that were optimal for
each activated affordance ∆i, and increment that value for
∆i.β. This captures how large or small optimal action sets
are expected to be for each affordance.

IV. EXPERIMENTS

We conducted a series of experiments in the Minecraft
domain that compared the performance of several OO-MDP

solvers without affordances to their affordance-aware counter-
parts. We selected the expert affordances from our background
knowledge of the domain and specified them so that each
affordance always mapped to the same set of actions.

For the expert affordances, we gave the agent a knowledge
base of 5 types of affordances, which are listed in Figure 3.
Our experiments consisted of a variety of common tasks (state
spaces 1-7 in Table I) in Minecraft, ranging from basic path
planning, to smelting gold, to opening doors and tunneling
through walls. We also tested each planner on worlds of
varying size and difficulty to demonstrate the scalability and
flexibility of the affordance formalism.

Additionally, we tested our learning procedure and com-
pared the performance of RTDP solving the OO-MDP with
(1) No affordances, (2) Learned affordances, and (3) Expert
provided affordances. The training data consisted of 1000
simple state spaces, each a 3× 3× 3 world with randomized
features that mirrored the agent’s actual state space. The same
training data was used for each test state space.

The evaluation metric for each trial was the number of Bell-
man updates that were executed by each planning algorithm.
Value Iteration was terminated when the maximum change in
the value function was less than 0.01. RTDP terminated when
the maximum change in the value function was less than 0.01
for five consecutive policy rollouts. In subgoal planning, the
high-level subgoal plan was solved using breadth-first search,
which only took a small fraction of the time compared to the
total low-level planning and therefore is not reported. We set
the reward function to −1 for all transitions, except transitions
to states in which the agent was on lava, which returned −200.
The goal was set to be terminal. The discount factor was
set to λ = 0.99. For all experiments, actions associated with
a direction (e.g. movement, block placement, jumping, etc.),
had a small probability (0.3) of moving in another random
direction.

Lastly, we conducted experiments in which we varied the
number of training worlds used in the learning process from 0-
1000 to demonstrate that planning performance improves with
more training data. As in Table II, we generated 0 to 1000
simple state spaces, each a 3× 3× 3 world with randomized
features that mirrored the agent’s actual state space. We then
solved the OO-MDP with training data of 0 to 1000 simple
state spaces to demonstrate the effectiveness of added training
data.

∆1 = 〈nearTrench, reachGoal〉 7−→ {place, jump}
∆2 = 〈onP lane, reachGoal〉 7−→ {move}
∆3 = 〈nearWall, reachGoal〉 7−→ {destroy}
∆4 = 〈nearFurnace,makeGold〉 7−→ {place}
∆5 = 〈nearOre,makeGold〉 7−→ {destroy}

Fig. 3. The five affordance types used in expert experiments.

TABLE I
EXPERT AFFORDANCE RESULTS: AVG. NUMBER OF BELLMAN UPDATES

PER CONVERGED POLICY

State Space VI A-VI RTDP A-RTDP SG A-SG
1 71604 100 836 152 1373 141
2 413559 366 4561 392 28185 547
3 1439883 904 18833 788 15583 1001
4 861084 4368 12207 1945 6368 1381
5 413559 366 4425 993 25792 597
6 203796 105 26624 145 5404 182
7 16406 962 7738 809 7412 578

TABLE II
LEARNED AFFORDANCE RESULTS: AVG. NUMBER OF BELLMAN UPDATES

PER CONVERGED POLICY

State Space No Affordances Learned Expert
Tiny 879 414 94
Small 1460 802 321
Medium 3993 2412 693
Large 8344 5100 1458

V. RESULTS

Table I shows the number of Bellman updates required when
solving the OO-MDP with conventional methods (left col-
umn) compared to solving the OO-MDP with an affordance-
aware method (right column). The affordance-aware methods
significantly outperformed their unaugmented counterparts in
all of these experiments. These results, while unsurprising,
concretely demonstrate that a small set of affordances prune
away many useless actions across many different types of
Minecraft tasks.

Table II indicates the average number of Bellman updates
required by RTDP to solve the OO-MDP in each of the four
candidate worlds. The learned affordances clearly improved
on standard RTDP by a significant margin, though there is
clearly still room to improve the learning process to approach
learned affordances that are near-expert level.

Figure 4 demonstrates the added effect of more training
data. In these experiments, we tested on map types that mir-
rored the features of the worlds generated during training, but
this process could be extended to allow for scaffolded learning
and more complicated maps (such as the gold smelting task

Fig. 4. The effectiveness of added training data on planning performance.

in Figure 1). The averages reported are from solving the OO-
MDP 20 times for each world, with each knowledge base.
There was a negligible difference in the quality of the policies
generated.

VI. RELATED WORK

In this section, we discuss the differences between
affordance-aware planning and other forms of knowledge that
have been used to accelerate planning.

A. Temporarily Extended Actions
Temporally extended actions are actions that the agent can

select like any other action of the domain, except executing
them results in multiple primitive actions being executed
in succession. Two common forms of temporally extended
actions are macro-actions [10] and options [20]. Macro-
actions are actions that always execute the same sequence
of primitive actions. Options are defined with high-level
policies that accomplish specific sub tasks. Although the
classic options framework is not generalizable to different
state spaces, creating portable options is a topic of active
research [14, 12, 17, 5, 1, 13].

Given the potential for unhelpful temporally extended ac-
tions to negatively impact planning time [11], we believe
combing affordances with temporally extended actions may be
especially valuable because it will restrict the set of temporally
extended actions to those useful for a task. In the future, we
plan to explore the benefit from combining these approaches.

B. Action Pruning
Sherstov and Stone [19] considered MDPs with a very large

action set and for which the action set of the optimal policy of
a source task could be transferred to a new, but similar, target
task to reduce the learning time required to find the optimal
policy in the target task. The main difference between our
affordance-based action set pruning and this action transfer
work is that affordances prune away actions on a state by
state basis, where as the learned action pruning is on per task
level. Further, with lifted goal descriptions, affordances may
be attached to subgoal planning for a significant benefit in
planning tasks where complete subgoal knowledge is known.

Rosman and Ramamoorthy [18] provide a method for
learning action priors over a set of related tasks. Specifically,
they compute a Dirichlet distribution over actions by extracting
the frequency that each action was optimal in each state for
each previously solved task.

There are a few limitations of the actions priors work that
affordance-aware planning does not possess: (1) the action
priors can only be used with planning/learning algorithms that
work well with an ε-greedy rollout policy; (2) the priors are
only utilized for fraction ε of the time steps, which is typically
quite small; and (3) as variance in tasks explored increases,
the priors will become more uniform. In contrast, affordance-
aware planning can be used in a wide range of planning
algorithms, benefits from the pruned action set in every time
step, and the affordance defined lifted goal-description enables
higher-level reasoning such as subgoal planning.

C. Temporal Logic

Bacchus and Kabanza [2, 3] provided planners with domain
dependent knowledge in the form of a first-order version of
linear temporal logic (LTL), which they used for control of
a forward-chaining planner. With this methodology, STRIPS
style planner may be guided through the search space by
checking whether candidate plans do not falsify a given
knowledge base of LTL formulas, often achieving polynomial
time planning in exponential space.

The primary difference between this body of work and
affordance-aware planning is that affordances may be learned
(increasing autonomy of the agent), while LTL formulas are
far too complicated to learn effectively, placing dependence
on an expert.

D. Heuristics

Heuristics in MDPs are used to convey information about
the value of a given state-action pair with respect to the
task being solved and typically take the form of either value
function initialization, or reward shaping. Initializing the value
function to an admissible close approximation of the optimal
value function has been shown to be effective for LAO* and
RTDP [9].

Reward shaping is an alternative approach to providing
heuristics. The planning algorithm uses a modified version of
the reward function that returns larger rewards for state-action
pairs that are expected to be useful, but does not guarantee
convergence to an optimal policy unless certain properties of
the shaped reward are satisfied [16].

A critical difference between heuristics and affordances is
that heuristics are highly dependent on the reward function
and state space of the task being solved, whereas affordances
are state space independent and transferable between different
reward functions. However, if a heuristic can be provided,
the combination of heuristics and affordances may even more
greatly accelerate planning algorithms than either approach
alone.

VII. CONCLUSION

We proposed a novel approach to representing knowledge
in terms of affordances [7] that allows an agent to efficiently
prune its action space based on domain knowledge, providing
a significant reduction in the number of state-action pairs
the agent needs to evaluate in order to act optimally. We
demonstrated the efficacy of the affordance model by com-
paring standard paradigm planners to their affordance-aware
equivalents in a series of challenging planning tasks in the
Minecraft domain. Further, we designed a full learning process
that allows an agent to autonomously learn useful affordances.
We provided preliminary results indicating the effectiveness of
the learned affordances, suggesting that the agent may be able
to learn to tackle new types of problems on its own.

In the future, we hope to increase our coverage of Minecraft
to solve even more difficult planning problems, and apply this
approach beyond the Minecraft domain and onto actual robots
and other domains of interest.

REFERENCES

[1] D. Andre and S.J. Russell. State abstraction for programmable
reinforcement learning agents. In Eighteenth national con-
ference on Artificial intelligence, pages 119–125. American
Association for Artificial Intelligence, 2002.

[2] Fahiem Bacchus and Froduald Kabanza. Using temporal logic to
control search in a forward chaining planner. In In Proceedings
of the 3rd European Workshop on Planning, pages 141–153.
Press, 1995.

[3] Fahiem Bacchus and Froduald Kabanza. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence, 116:2000, 1999.

[4] Adi Botea, Markus Enzenberger, Martin Müller, and Jonathan
Schaeffer. Macro-ff: Improving ai planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research, 24:581–621, 2005.

[5] T. Croonenborghs, K. Driessens, and M. Bruynooghe. Learning
relational options for inductive transfer in relational reinforce-
ment learning. Inductive Logic Programming, pages 88–97,
2008.

[6] C. Diuk, A. Cohen, and M.L. Littman. An object-oriented rep-
resentation for efcient reinforcement learning. In Proceedings of
the 25th international conference on Machine learning, ICML
’08, 2008.

[7] JJ Gibson. The concept of affordances. Perceiving, acting, and
knowing, pages 67–82, 1977.

[8] Matthew Grounds and Daniel Kudenko. Combining reinforce-
ment learning with symbolic planning. In Proceedings of the
5th, 6th and 7th European conference on Adaptive and learning
agents and multi-agent systems: adaptation and multi-agent
learning, ALAS ’05, 2005.

[9] Eric A Hansen and Shlomo Zilberstein. Solving markov
decision problems using heuristic search. In Proceedings of
AAAI Spring Symposium on Search Techniques from Problem
Solving under Uncertainty and Incomplete Information, 1999.

[10] Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling,
Thomas Dean, and Craig Boutilier. Hierarchical solution of
markov decision processes using macro-actions. In Proceed-
ings of the Fourteenth conference on Uncertainty in artificial
intelligence, pages 220–229. Morgan Kaufmann Publishers Inc.,
1998.

[11] Nicholas K. Jong. The utility of temporal abstraction in
reinforcement learning. In Proceedings of the Seventh Interna-
tional Joint Conference on Autonomous Agents and Multiagent
Systems, 2008.

[12] G. Konidaris and A. Barto. Efficient skill learning using abstrac-
tion selection. In Proceedings of the Twenty First International
Joint Conference on Artificial Intelligence, pages 1107–1112,
2009.

[13] G. Konidaris, I. Scheidwasser, and A. Barto. Transfer in
reinforcement learning via shared features. The Journal of
Machine Learning Research, 98888:1333–1371, 2012.

[14] George Konidaris and Andrew Barto. Building portable options:
Skill transfer in reinforcement learning. In Proceedings of the
International Joint Conference on Artificial Intelligence, IJCAI
’07, pages 895–900, January 2007.

[15] M Newton, John Levine, and Maria Fox. Genetically evolved
macro-actions in ai planning problems. Proceedings of the 24th
UK Planning and Scheduling SIG, pages 163–172, 2005.

[16] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy in-
variance under reward transformations: Theory and application
to reward shaping. In ICML, volume 99, pages 278–287, 1999.

[17] Balaraman Ravindran and Andrew Barto. An algebraic ap-
proach to abstraction in reinforcement learning. In Twelfth Yale
Workshop on Adaptive and Learning Systems, pages 109–144,
2003.

[18] Benjamin Rosman and Subramanian Ramamoorthy. What good
are actions? accelerating learning using learned action priors.
In Development and Learning and Epigenetic Robotics (ICDL),
2012 IEEE International Conference on, pages 1–6. IEEE,
2012.

[19] A.A. Sherstov and P. Stone. Improving action selection in mdp’s
via knowledge transfer. In Proceedings of the 20th national
conference on Artificial Intelligence, pages 1024–1029. AAAI
Press, 2005.

[20] Richard S Sutton, Doina Precup, and Satinder Singh. Between
mdps and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1):181–211,
1999.

	Introduction
	Background
	OO-MDPs

	Affordances
	Affordance-Aware Planning
	Learning Affordances

	Experiments
	Results
	Related Work
	Temporarily Extended Actions
	Action Pruning
	Temporal Logic
	Heuristics

	Conclusion

