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Abstract—Human-robot collaboration is a complex
interaction set involving speech, gesture, and feed-
back. We propose a pomdp framework for the task
of collaborative object placement in a tabletop en-
vironment. The framework models discrete space,
performs high-level reasoning for objective estima-
tion, and provides continuous feedback to the human
collaborator, to achieve faster and more accurate
object placement. We also present a pilot study
evaluation of the framework suggesting that all three
forms of interaction mentioned are necessary for a
consistent and accurate robot collaborator.

I. INTRODUCTION

Countless object-centric, collaborative tasks be-
tween human and robot involve object placement.
Once a robot is holding an object of interest, there
is still the complex, but critical problem of collabo-
rating to correctly place or deliver this object.1 For
example, a kitchen assistant robot might be asked
to place a box of flour near the red mixing bowl;
a workshop assistant robot might be required to
deliver a specific tool to the mechanic’s outstretched
hand; a nurse assistant robot might be asked to
apply a bandage on the wound of a patient; a house
assistant robot might be enlisted to lay the dinner
table. An essential first step to each of these tasks
is understanding where they need to be done.

To perform this first step and collaborate on such
a task, a robot must first be able to understand

1Canonically called the pick-and-place problem

how humans reference space in the physical world.
Humans reference space using expressions that
combine speech, gesture, and body language, just as
they do objects (Eldon, Whitney, and Tellex 2016).
However, unlike objects, space is a continuous vari-
able, and this both changes how humans construct
referring expressions, and makes the inference more
complex.2 In addition to this, in any such collabora-
tive task, the human provides their referring signals
continuously over time, and these signals evolve
as the human’s objective changes. Therefore, the
robot must not only be able to understand how
humans reference space, but do so in real-time.
Furthermore, when two humans collaborate on a
task, they monitor each other to get feedback on
the other person’s current understanding of the goal,
and alter their future actions based on this feedback,
such that the end goal may be achieved (Clark
and Krych 2004). Therefore, to emulate a human
collaborator, a robot must also be able to provide
this continuous feedback (termed social feedback
by Wu et al. 2015). These three capabilities appear
to be critical for a truly collaborative framework for
object placement.

Recent robotics research in this field has primar-
ily focused on (a) object reference rather than
space/location reference, and (b) on the how of ob-
ject placement, rather than the where. In the area of
object reference, current approaches have explored
the static learning of object referring expressions

2For example, the robot must have a notion of how humans
discretize space in their minds.



(Matuszek et al. 2014), as well as the dynamic
interpretation of object referring expressions (El-
don, Whitney, and Tellex 2016). In the area of
enabling object placement, recent work includes
an inverse motion planner for object trajectories
(Holladay et al. 2013), and learning algorithms for
calculating the optimal positions for placement in
prior-known areas (Jiang et al. 2012a, Jiang et al.
2012b). While this work is useful and part of the
puzzle, it assumes knowledge of where the human
wants the object placed. There is limited current
research that directly addresses the critical first step
of determining the human’s placement objective.

As a foundation for such work, we propose a
computational framework for collaborative object
placement in tabletop environments. The framework
integrates the three capabilities for collaboration
outlined above. It maintains a discretized spatial
model of the placement environment to under-
stand space/location referring expressions. It uses a
POMDP that receives multimodal observations and
chooses multimodal actions, to interact with the
human and continuously estimates their placement
objective. It displays continuously updating visual-
izations of the POMDP objective estimate, as forms
of real-time feedback to the human collaborator.

To evaluate our proposed framework, we conducted
a pilot study where participants used speech and
gesture to ask our robot to place an object in a
particular location on the tabletop. We measured
speed and accuracy of these tasks for multiple
configurations of our framework, to test the relative
importance of language versus gesture, and one
form of continuous feedback over another.

II. RELATED WORK

A. Planning Frameworks

Considerable work has been done in developing
generalized frameworks for solving planning prob-
lems in artificial intelligence.

(Kaelbling, Littman, and Cassandra 1998) advocate
for the modelling of sequential planning problems

in partially observable domains as Partially Ob-
servable Markov Decision Processes (POMDPs).
Within this general framework, the agent maintains
and periodically updates, through observations and
actions, a belief state or probability distribution
over possible states, in lieu of concrete knowledge
of the current state. Solutions to POMDPs balance
the priorities of information-gathering actions, with
exploitative, reward-seeking actions. This property
is particularly applicable to a collaborative setting
such as the problem of object placement, since we
want to develop a non-rule-based approach for the
robot to decide how and when to gather information
from the human about their objectives. Our work
will use this general POMDP framework to model
and solve specific task of collaborative object place-
ment.

In (Gmytrasiewicz and Doshi 2005), a framework
for sequential planning in multiple-agent settings
is described, as an extension of the POMDP. This
framework, the Interactive POMDP, replaces
the simple belief state described above, with hi-
erarchical belief systems that comprise beliefs of
the physical world, of other agents, and of other
agent’s beliefs. Modelling the human as a second
agent in the environment (as opposed to simply an
observation generator), is an interesting prospect,
and this is one approach to doing so. However,
there are two problems with the I-POMDP that
makes it an unsuitable candidate for our work. First,
the introduction of hierarchical belief statements
compounds state and belief spaces, considerably
increasing the complexity of finding solutions in
an already difficult state space. A succeeding paper
(Doshi and Gmytrasiewicz 2009) describes alter-
nate methods for solving I-POMDPs, but it only
partially addresses the issues of state and policy
space complexity. Second, the utility of modelling
typical human collaborative communication with
more than two layers of belief systems is unclear.
Our work therefore searches for a better balance
between computational tractability and an effective
model of collaboration.

In (Wu et al. 2015), the general POMDP framework



is applied to the task of object pickup and hand-
off in a tabletop environment. Though the intended
approach and environment are similar, their focus
is on a conceptually and computationally different
problem than that of object placement. The lat-
ter task is more complex, due to the exponential
increase in state space complexity, as described
already. Therefore, our work poses different chal-
lenges and requirements, and the opportunity to
understand how to support complex collaborative
tasks between humans and robots.

B. Human-Robot Communication

Work has also been done on the subject of human-
robot communication towards better human-robot
collaboration.

In (Fang, Doering, and Chai 2014), two collabo-
rative models are designed for human-robot refer-
ential communication, motivated by human-human
referential communication. These models show
good success in comparison to non-collaborative
models, but they only consider language within the
realm of referential communication. In a succeeding
work (Fang, Doering, and Chai 2015), the role
of robot gesture and human eye gaze (defined as
embodiment) in the collaborative process is ex-
plored. Though exploring embodiment in referential
communication, this work did not explore more
critical human referential gestures, which will be
central to our work.

In (Matuszek et al. 2014), a corpus of unscripted
language and gesture object-referring expressions is
used to train models to identify objects. Though the
models are successful, they are static and do not
consider the relationship of referring expressions
over time.

In (Eldon, Whitney, and Tellex 2016), object-
referral expressions are treated as multimodal and
dynamic. A Bayesian Filter approach is used
to interpret natural language and human gestures
together, in real time. However, this model is
mor rule-based than collaborative, since robot ac-
tions are predefined to occur at certain observation

thresholds. It cannot support higher reasoning about
the state of the world, nor represent robot actions as
affecting the world and subsequent human actions.
Our intended POMDP framework allows us to do
exactly that, thus moving towards more meaningful
collaboration experiences.

III. TECHNICAL APPROACH

The goal of this work is to enable the robot to
meaningfully collaborate with a human on the task
of object placement.

A. POMDP Overview

A Markov Decision Process is a mathematical
framework for planning and decision making in
environments with full agent observability, but
stochastic transition dynamics. At each timestep of
such a process, the decision maker or agent is in
a particular state s, and can choose from a range
of available actions, to transition into a new state
s′, and receive some corresponding reward r. The
name Markov, and the related term Markovian, is
critical because it specifies that the next state of
this stochastic process (s′) is dependent only on the
current state, s, and the action taken a.

A POMDP is a generalization of the MDP that
introduces an additional constraint in the form of
partial observability to the environment. The agent
can no longer directly see what state it is in;
instead, it receives observations, and has a model
for how observations arise from different states and
optionally, actions. The underlying dynamics are
still Markovian.

The POMDP is formally defined as a seven-tuple
(S,A, T,R,Ω, O, γ), where:

• S is the set of states

• A is the set of actions

• T (S × A → S′) is the function of transition
probabilities between states

• R (S ×A→ R) is the reward function



• Ω is the set of all observations

• O (S × A→ [0, 1]) is the function describing
the probability of an observation, given the
current state and previous action

• γ ∈ [0, 1], is the discount factor, dictating how
we value future rewards

B. Abstracting the Environment

The underlying hidden variable of our placement
framework - the spatial coordinates of the human’s
placement objective - is a continuous variable. This
means that the associated state space of the domain
would be infinite. Since POMDPs are computation-
ally complex already, an essential first step was
discretizing our state space through environment
abstraction.

We abstract our environment by first redefining the
tabletop as a two-dimensional grid G, with dimen-
sions Gx × Gy. With the grid in place, we redefine
our hidden variable as the coordinates of the grid
cell containing our human’s placement objective.

This environment abstraction is referenced several
times throughout the paper. For convenience, the
Table I defines the parameters associated with our
environment abstraction.

TABLE I
ENVIRONMENT ABSTRACTION PARAMETERS

Parameter Significance
T Tabletop in the environment
G Grid abstraction of the framework
Tx Size of the table along the x axis
Ty Size of the table along the y axis
Gx Size of the grid along the x axis
Gy Size of the grid along the y axis
ADE Accepted discretization error due to G

Our environment abstraction is useful for the fol-
lowing reasons:

• It makes the framework computationally
tractable, trading centimeter-level accuracy for
a substantial computational gain. The exact

trade-off (or level of accepted error due to the
discretization), can be defined as:

ADE =

√
(
Tx
Gx

)2 + (
Ty
Gy

)2 (1)

• It allows us to model a spectrum of placement
tasks with a single framework. A coarser grid
G significantly speeds up the per-step compu-
tation time of the framework, while a finer G
offers much higher accuracy in placement.

• It provides a natural foundation to the lan-
guage and gesture models of the framework,
described in sections III-D and III-E below.

C. Placement Framework

The proposed POMDP framework is formally de-
fined by the seven-tuple, (S,A, T,R,Ω, O, γ).

States S is the set of states in this domain, each of
which is a tuple (O, χ, κ, τ, λ):

• O is the set of objects on the tabletop

• χ is the object being held by the robot

• κ, is the count of the time-steps since the last
physical action

• τ is the boolean value representing whether the
object χ has been placed

• λ is the table-grid location where the human
collaborator wants χ to be placed (partially-
observable)

O is useful in allowing the human to make referring
speech expressions in conveying their objective. χ
is useful for the robot to frame expressions or
questions of its own, to prompt for further objective
inference. κ is useful in managing how frequently
the robot acts physically. τ is useful in detecting the
terminal state of the framework.

Actions A is the set of actions that can be taken by
the robot.



For each cell l of grid G, we define the following
actions:

• PLACE, which places the object χ in l

• HOVER, which hovers the held object over l,
and asks the user a question

We also define a strictly information-gathering ac-
tion:

• WAIT, which simply waits (and probabilisti-
cally asks) for further input from the user

See III-F1 for details on how the framework decides
which actions are applicable to be performed in a
particular state of the process.

Transitions T is the transition function governing
the probability of moving to a new state, given a
current state and a particular action. It is assumed
that the set of objects on the table O, and the object
being held, χ, do not change until an object is
actually placed. The WAIT action causes a transition
to a new state with the value of κ incremented by
one. The HOVER action causes a transition to a new
state with the value of κ reset to zero. The PLACE
action transitions to a terminal state (i.e., a state
with τ true) since the object χ has been placed.

Most of the time, a human collaborator has a
specific placement location for the object χ in
mind throughout the collaboration task. This can
be modelled in the transition dynamics by deter-
ministically keeping the λ value of our state con-
stant through each transition. On occasion however,
human collaborators may change their mind about
where they want the object χ placed, mid task.
To keep our decision-making framework robust in
these situations, we model a slow decay in our
transition dynamics.

Specifically, we assume that the human collaborator
has a high probability k of referring to the same
goal location λ during the task, and therefore a
probability (1 − k) of changing their mind. We
further assume that the probability of switching
to any other desired location is equally probable.

These assumptions lead to the following transition
model, for λ:

p(λt+1|λt, at)

=

{
k if λt == λt+1

1−k
n−1 otherwise

(2)

where k > 0.99, at is WAIT or HOVER, and n is the
number of states in our belief, i.e, the dimensions
of our grid abstraction, G.

Reward Function R is the reward function, govern-
ing the positive or negative reinforcement received
by the robot based on the current state and action
taken. The ultimate objective of the framework is
for the robot to place the object in the human
collaborator’s desired location; we model this by
return a reward of +5 when the robot performs
a correct placement. The worst outcome for the
framework would be an incorrect placement; we
model this by returning a heavy negative reward
of −20 for bad placements.

During the interaction, we have several secondary
objectives that we model into our reward function.
We want to generate confidence in the human
collaborator that the robot is receptive to changing
language and gesture; we model this by assigning
a negative reward (−3) to the most passive action,
WAIT. We also want to convey straightforwardly
what we believe to be the goal location; we model
this by assigning a relatively higher reward to a
HOVER over what we believe to be the human’s goal
location, than a HOVER over some other location.

The exact rewards assigned to good and bad
HOVERs depends on the planning horizon being
used to solve the POMDP. For a finite planning
horizon higher than 1, rewards of −2 and −1 for
bad and good HOVER actions respectively allow the
framework to converge quickly. For a finite planning
horizon of 1, values of −2 and 4 have shown in
experiment to encourage both sufficient interaction
and quick convergence.



A summary of reward function (for a planning
horizon of 1) is available in table II.

TABLE II
REWARD FUNCTION

Action/Outcome Reward Reasoning (should...)
Incorrect Place -20 Avoid premature placement

Wait/Do Nothing -3 Interact with collaborator
Hover Over Incorrect Location -2 Explore collaborator’s goal
Hover Over Human’s Objective 4 Generate confidence in collaborator

Correct Place 5 Achieve collaborator’s goal

Observations Ω is the set of observations, each of
which is a tuple o = (l, g), representing the human
collaborator’s language, and the human collabora-
tor’s gestures. For experiments run on our Baxter
robot, language is received through the connected
microphone and the Google Speech Recognition
platform, and gestures are received through the
robot’s retrofitted Microsoft Kinect and OpenNI
Tracking Software.

The observation l is the natural, unaltered transcrip-
tion received from GSR. The gesture observation
g is a set of four vectors representing the world
(x, y, z) coordinates of the human collaborator’s
left and right shoulders and wrists. We use this
information to calculate the targets of their pointing
gestures, as explained in section III-E below.

Observation Function O is the observation func-
tion, governing the probability of witnessing a
particular observation, based on the action taken
and the resulting state in which said observation
occurred. That is,

O = p(ot+1|st+1, at) (3)

which can be expanded to

O = p((lt+1, gt+1)|st+1, at) (4)

We assume3 the conditional independence of the
language and gesture components of our observa-
tions. This makes development and configuration
testing much easier, and simplifies the observation
function to be:

O = p(lt+1|st+1, at).p(gt+1|st+1, at) (5)

3Similar to Wu et al. 2015.

Discount γ is the discount factor used when cal-
culating future discounted rewards. The framework
sets γ = 0.9, to value future rewards higher, to
encourage longer-term thinking in the framework.

Solution & Policy Generation

For our work, we chose to solve our POMDP using
the technique of Belief Sparse Sampling, a finite-
horizon algorithm that provides approximations of
the optimal policy of the POMDP. The POMDP is
solved by first converting it into a Belief MDP,
so called because we consider every belief to be
a Markovian state in this process. The resulting
BMDP is no longer partially observable, since the
agent always knows its belief. This related BMDP is
then solved using Sparse Sampling. The framework
described in this paper has been implemented us-
ing the Brown-UMBC Reinforcement Learning and
Planning Library (BURLAP, MacGlashan 2015).

D. Language Model

Language is a key component of any human-human
collaborative effort, and therefore for this human-
robot collaborative framework. Two types of speech
were focused on:

• Simple Affirmative/Negative Expressions

• Relative Location Referring Expressions

Affirmative/Negative Expressions are the set of ex-
pressions used to express positive or negative re-
sponses. These expressions support question-answer
dialogue between robot and human.

Relative Location Referring Expressions are speech
expressions that refer to a location in relation to
other known locations in the environment. These
expressions support more complex, instructive di-
alogue between human and robot, and are very
important in command/collaborative tasks such as
object placement.

An assumption made here is that the two types of
speech are conditionally independent of each other.



This simplifies the observation function consider-
ably, and also support configuration testing, which
will be elaborated on below.

Affirmative/Negative Expressions These are ex-
pected to occur after the HOVER action, since this
action is accompanied by a question that explicitly
prompts a positive or negative response from the
human.

Affirmative expressions are handled as follows:

p(lt+1 is aff. |st+1, at = hover)

=

{
0.99 if at.l == st+1.λ
0.01
n−1 otherwise

(6)

Negative expressions are handled as follows:

p(lt+1 is neg. |st+1, at = hover)

=

{
0.01 if at.l == st+1.λ
0.99
n−1 otherwise

(7)

where n is the number of states, or grid cells in the
grid abstraction G.

Referring Expressions Referring expressions are
expected to occur either after the HOVER action
or after the WAIT action, since both actions are
accompanied by questions that prompt further input
from the human collaborator.

A simple location referring expression (aimed at
location l, say) is defined as:

φl = (d, r)

where d is the direction specified and r is the
object/point used as reference; the goal location l
is in direction d from r. It follows that complex
location referring expressions can be defined as the
intersection of multiple, conditionally independent
simple expressions, as:

Φl = (φl1, φ
l
2, φ

l
3, ...)

These definitions together form an extensible model
on which the observation function of the framework
can be specified. Under this model, we need only

specify the observation function for a set of simple
referring expressions. We can incorporate increas-
ingly complex (or overloaded) referring expressions
without requiring redesigns of the observation func-
tion.

In short, this Φ specification becomes a layer of
abstraction between all language parsing modules
and our framework’s observation function, and of-
fers three advantages:

• the observation function can be defined

• the observation function is unaffected by the
varying speech patterns of human collaborators

• the language parsing module can be substituted
or changed without affecting the observation
function

Parser Φ Spec. Obs. Fn.

Assuming that the language parsing module being
used is configured to output these referring expres-
sions, we can rewrite the language model as:

p(lt+1|st+1, at) = p(Φt+1|st+1, at)

=
∏
i

p(φi|st+1, at)
(8)

where at = WAIT or HOVER

Where the conditional probability for a particular
referring expression, φ, is based on whether the
state’s hidden variable location (λ) is actually in
the direction φ.d from the reference object φ.r.
Formally:

p(φ|st+1, at)

=

{
0.99 if (st+1.λ).from(φ.r) == φ.d
0.01
n−1 otherwise

(9)

where at = WAIT or HOVER, and n is the dimen-
sions of G.

As a start, we support for movement along the
positive and negativex and y axes, and in the
negative z. This gives us considerable flexibility to



define directions like left, right, forward, backward,
in front, behind, on, downward.

For example, if the human collaborator produces the
referring expression, ”place the object to the left of
the spoon, but in front of the fork”, the language
parsing module might produce the following com-
plex referring expression:

Φ = ((NEG_Y, spoon), (POS_X, fork))

The observation function can readily interpret the
probability of the getting such a referring expression
from every state in S.

Attentive Model A special case of the referring
expressions model is the direct location referring
expression, i.e., location referring expressions made
with respect to the robot’s current end-effector
position itself. These fit cleanly within the referring
expression model, as:

φdirect = (d, robotEE)

This creates an attentive model for the robot, allow-
ing it to use the current position of its end-effector
(and therefore the object in its hand, χ), to interpret
language observations from the human collaborator,
and respond to direct referring expressions such
as ”to the left”, or ”just in front”, from human
collaborators.

E. Gesture Model

The gesture model of the framework revolves
around pointing gestures. These are defined as the
vector v collinear with our human collaborator’s
raised forearm, directed towards the tabletop, with
the point of intersection p of this vector with the
tabletop considered the intended target.4

For the observation function, the human collabora-
tor’s pointing target p is considered to be sampled
from a bivariate Gaussian (normal) distribution cen-
tered on the human’s true goal placement location.

4Similar to Eldon, Whitney, and Tellex 2016

In terms of the variables defined above and from
the POMDP framework described earlier, this is

p(gt+1|st+1, at) ∝ N2,(µ,Σ)[(p.x, p.y)] (10)

where the mean of the distribution, µ is:

µ = (λ.x, λ.y) (11)

and the bivariate distribution has a covariance ma-
trix of the form:

Σ =

[
σ2
x 0

0 σ2
y

]
(12)

where σ1 and σ2 are a function of the dimensions of
G. These variables represent the range of accuracy
we expect our human collaborators to have while
pointing at their target location. With our tracking
software and experimental setup, the following val-
ues produced promising and reliable results:

σx = σy = 0.12 (13)

The parameters of the distribution selected should
also be used to select the dimensions of our grid
abstraction, Gx and Gy. In particular,

Tx
Gx
∈ [σx, 2σx] (14)

and similarly for the y dimension. This ensures that
the each grid cell roughly fits the shape of the
bivariate normal distribution, balancing accuracy
with fast convergence of the POMDP framework.

F. Framework Considerations

1) Preconditions on BMDP

As described earlier, the POMDP is solved by
converting it into a BMDP. To significantly im-
prove the quality and solvability of the framework,
certain preconditions are placed on the Belief
Actions of the BMDP. These preconditions pro-
vide a significant speedup to the per-step solving



time of the framework, allowing us to increase the
finite horizon of the solver, as well reduce ourADE .

We specify that the HOVER and PLACE Belief
Actions are only applicable (i.e., can be per-
formed) on belief states where the target of these
actions matches the highest probability state of the
belief state. This precondition can easily be relaxed
to the top x percentile of states within the belief
state.

The net result of the preconditions is that the frame-
work more often chooses to HOVER and PLACE in
the locations that it has most beliefs to be the human
collaborator’s goal, rather than spending time hov-
ering over other locations, for example. It chooses
confirmation over elimination while performing its
inference, and this has shown to work very well in
experiment.

2) Continuous Social Feedback

Heat Map A heatmap belief state visualizer is the
first form of continuous feedback provided by the
framework to its human collaborator. It visualizes
the continuously updating belief state of the under-
lying BMDP being used to solve the POMDP, as the
framework is being run.

In particular, the visualizer displays a scaled version
of the actual table in the environment; it overlays
the belief state as a grid of cells on the table,
each representing a potential placement location
(identical to our grid abstraction G). The color fill
or heat of each grid cell is defined on a color
spectrum ranging from green (cold) to red (hot); it
is a function of the current belief (probability value)
that that cell is the human’s goal placement location
(λ).

The visualizer communicates to the collaborator
what the robot currently believes is their goal, based
on the past language and gestural communications
of the human. If the belief matches the human
collaborator’s desire, it increases the human’s con-
fidence in the robot. If the belief does not match
the human collaborator’s desire, then they have the

opportunity to alter their speech or gesture as they
think is most appropriate.5

The heatmap updates at roughly 5−10Hz, depend-
ing on Gx and Gy, and other parameters of our
implementation. Improving this frequency will be
a focus in our future work.

Figure 1 shows three frames of the heatmap belief
state visualizer, at different stages of a placement
task.

Fig. 1. Heatmap Progression

Robotic Emotions Robotic emotions are the sec-
ond form of continuous feedback provided by the
framework to its human collaborator. They are
also continuously updated based on the belief state
of the underlying BMDP, though using a different
approach.

Our robotic framework is capable of expressing
several emotions, using custom-designed animated
faces on its head display. Each emotion has a library
of roughly 120 frames, representing a wide range
of intensity of that emotion. For our framework, we
chose to focus on the emotion of confusion.

Each time the belief state (b) of the underlying
BMDP is updated, the entropy, H of the associated
probability distribution is also calculated.

H(b) = −
n∑
i

P (b(i)). logP (b(i)) (15)

where n is the total number of states in the belief
state, Gx ∗ Gy.

5Based on the findings from Clark and Krych 2004



The more distributed the probability distribution is
over the belief states, the higher the entropy. This
value H is divided by the maximum entropy of
the belief state, Hmax (which is the entropy of
the initial belief state uniform over all possible
locations.).

Hmax = −
n∑
i

Pinit(b(i)). logPinit(b(i))

= − log
1

n
(16)

where n is the total number of states in the belief
state, Gx ∗ Gy.

This result is a measure of how unsure the frame-
work is about its collaborator’s goal. The result
H

Hmax
is used to express the degree of confusion

on the robot’s head display, with higher degrees dis-
playing more confusion. Figure 2 elucidates degrees
0, 60, and 119 of confusion.

Fig. 2. Robotic Emotion

Comments on Feedback Both forms of continuous
feedback are rooted in the framework’s belief state,
since that is the current understanding of the goal
(Clark and Krych 2004). The heat map is an unpro-
cessed, explicit form of feedback; mathematically,
it offers more information about the state of the
robot’s belief. By contrast, the robotic emotions the
framework chooses to display are a more processed,
implicit form of feedback, summarizing the robot’s
belief of the world, but open to subjective interpre-
tation.

3) Safer Actions

An optional feature of the framework is to use safer
physical HOVER and PLACE actions. These actions
use the clearance map of the inverse kinematic
solver of the robot, to make sure that all hover
and place actions occur with target locations that

are known to be reliably accessible by the end-
effector of the robot. The inferred target hover and
placement locations are mapped to the closest valid
locations with the clearance maps, before these
actions are carried out.

The motivation behind this optional feature is to
avoid unexpected movements from the IK solver (a
separate piece of software also undergoing improve-
ment), enabling the framework to perform more
safely when used with fragile objects.

IV. EVALUATION

The framework was evaluated in simulation, as well
as in a real-world pilot study. The objective of
our evaluation was to gather preliminary results
of the performance of different configurations of
our framework. These results would allow us to
conclude the relative importance of language versus
gesture, and different forms of continuous social
feedback, to the process of human-robot collabo-
rative object placement.

A. Framework Configurations

The set of configurations of the framework used for
testing are available in Table III.

TABLE III
FRAMEWORK CONFIGURATIONS

Code Configuration
G Gesture
G-H G + Heatmap
GY G + Affirmative/Negative Speech
GY-H GY + Heatmap
GYR GY + Referring Speech
GYR-H GYR + Heatmap
GYR-HF GYR-H + Facial Expressions

The remaining configurations of our framework
(particularly those supporting F without H) were
excluded due to time and other constraints of the
study, but will be included in future user studies.



B. Metrics

The following per-trial, quantitative metrics were
selected:

• placement distance error - the distance in
centimeters from the target to the actual point
of placement

• time until completion - the time in seconds
from the start to the end of the trial

• steps until completion - the number of steps
taken by the framework from start to end of
the trial

• placement success - whether the placement
distance error was within the ADE of the
framework

C. Placement Tasks

Two types of placement tasks were defined for the
evaluation:

• A simple placement task, in which the target
location is communicated to the robot from the
beginning of the task, with coordinated speech
and gesture as chosen. Success is defined as
placing the object in the indicated target loca-
tion.

• A complex placement task, in which an initial
target location is communicated to the robot at
the beginning, followed by a change of intent
part-way through the task and the commu-
nication of a new, final target location, both
with coordinated speech and gesture as chosen.
Success in this task is defined as accounting
for the change of intent, and placing the held
object in the final target location.

D. Simulation

1) Procedure

Trial Trials were run on a 2.7 GHz Intel Core i7
workstation. Pointing gestures were simulated from

a bivariate normal distribution of similar design
to that used in the observation function. Speech
(affirmative/negative expressions and referring ex-
pressions) were simulated using text constructed
using the known target location. Both language and
gesture were generated probabilistically, to match
situations where the user did not produce either one
or both observations. The simple and complex tasks
defined above, were implemented as described us-
ing simulated environments in BURLAP. Since there
was no human collaborator in simulation, only the
configurations without continuous feedback were
evaluated.

Experiment Each experiment involved 50 simple
and 50 complex trials. Each experiment was run
for the configurations G, GY, and GYR.

Measurements Measurements for the quantitative
metrics were made automatically within the simu-
lation setup, using a system of organized logs.

2) Results

The results of the simulation tests are reported using
95% confidence intervals in tables IV and V.

TABLE IV
SIMULATION RESULTS (SIMPLE TASK)

Code Success (%) Error (cm) Time (s) Steps (#)
G 80± 19.20 7.51± 4.19 39.60± 7.02 32.50± 5.14

GY 100± 0 3.13± 0 7.75± 1.02 8.60± 0.65

GYR 100± 0 3.13± 0 6.05± 0.72 7.35± 0.49

TABLE V
SIMULATION RESULTS (COMPLEX TASK)

Code Success (%) Error (cm) Time (s) Steps (#)
G 61.82± 13.25 17.77± 5.78 105.47± 17.39 72.16± 5.67

GY 82.00± 11.03 17.60± 9.39 24.86± 2.71 23.96± 2.18

GYR 46.00± 14.31 53.90± 13.45 14.90± 2.15 16.04± 1.92

Discussion The simulation results show that the GY
and GYR configurations perform considerably bet-
ter, both in terms of accuracy as well as consistency,
than G on the simple placement task. The results
of the complex placement task are not as easily
interpretable or reliable, due to the wide confidence
intervals of multiple metrics. It is possible that



the environment for the complex task did not ade-
quately simulate hesitant speech before the change
of intent, leading the heavily speech dependent
configuration, GYR to be adversely affected. The
possibility of this is also supported by the short
time until completion numbers of the latter two
frameworks - they might have converged before the
change of intent even occurred, due to affirmative
speech. Improving the quality of this simulation
environment will be focused on in the future, so
that more statistically useful results can be gathered
for this task. Nevertheless, it useful to note that the
framework is capable of handling changes of intent
in many trials.

E. Real World

The real-world pilot study was conducted on two
external subjects selected through convenience sam-
pling. For the purposes of consolidating our data
and limiting the complexity of the study for the
external participants, only the simple placement
task was used. The study was also conducted on
one internal subject (the author of this paper), for
the purpose of gathering more data under time
constraints. (It also allowed us to make a first
approximation on the learning curve involved in
using this collaborative framework).

The pilot study produced promising preliminary
results that we view as a good proof of concept
of our work. A major objective of our future work
will be to conduct a larger and more comprehensive
user study, so that we may more rigorously evaluate
the strengths and weaknesses of our framework.

1) Procedure

Framework The values of all parameters of
the framework (whose motivations were discussed
above) were constant throughout the study. For our
study environment, we defined G as a 15 × 9 grid
over a table of dimensions roughly 1.88m×1.135m,
giving us the following scales:

Tx
Gx

= 0.1253m
Ty
Gy

= 0.1261m

Given the dimensions of our table, this gives us an
accepted discretization error (ADE) of about 8.89
cm.

Trial Each trial was performed with a Rethink
Robotics Baxter Robot set up in a tabletop envi-
ronment. A small rectangular test object about 6cm
wide was placed between the grippers of one of
Baxter’s hands. A square piece of tape about 2cm
wide was randomly placed on the table to indicate
the target placement location (for the center of the
test object) to the subject, completely unknown to
Baxter.

Subject Each subject was instructed to stand in
front of the table and collaborate with Baxter
on placing the held object in the specified target
location. They were informed that Baxter might
ask them questions about their objective, which
they could answer with yes/no responses. They
were given a microphone to wear, so their speech
could be recorded and transcribed by our speech
recognition platform. They were informed that the
Microsoft Kinect on top of the robot was tracking
the movements of both their arms. Subjects were
asked to communicate in the most natural way
possible, given the capabilities of the particular con-
figuration being tested. Informing the subjects about
the capabilities of each configuration was an active
choice made for the study, to exclude differences
linked to how subjects go about learning about the
abilities and limitations of their collaborators.6

Experiment Each experiment involved a subject
running at least four trials of the simple placement
task for each configuration of the framework in the
table III, giving a total of at least 20 trials per
subject.

Measurements During the trial, the time and steps
until completion were measured within the frame-
work implementation. The remaining metrics were
measured at the end of each trial.

6Although this is also an interesting question, and something
we will likely explore in the future



2) Results

The pilot study produced preliminary results that
are promising. The results and implications are
summarized in the tables and figures below.7

Statistics Across Trials

Table VI shows the overall statistics across all 64
trials of the framework. On average, the frame-
work converges in under a minute of continuous
interaction. It has a median placement distance
error that is less than the framework’s stated ADE .
The placement success rate across all trials is over
57.8%.

TABLE VI
PILOT STUDY OVERALL STATISTICS

Metric Mean Median
Placement Distance Error (cm) 9.486 7.75

Time until Completion (s) 45.08 38.5
Steps until Completion (#) 21.17 18

Figure 3 elucidates the distribution of placement
distance error across trials. It is slightly right-
skewed (with a mean of 9.48 and a median of 7.75,
as previously stated).

Fig. 3. PDE Histogram

Statistics Across Configurations

Table VII gives the mean-value metrics for the
7 configurations used in the pilot study. We note
a rise in the time taken between configuration G

7See end of paper for full-size figures

and almost all other configurations. Since G is
one of two configurations not using speech, this
(undesirable) increase in time could be attributed
to delays our speech recognition platform. We also
note here that the average placement distance error
drops by almost 70% from trials with configuration
G to those with configuration GYR-HF.

TABLE VII
PILOT STUDY CONFIGURATION MEANS

Configuration Error (cm) Time (s) Steps (#)
G 14.19 38.25 23.375
G-H 9.27 47.63 28
GY 11.21 49.83 18.75
GY-H 11.31 40.78 17.33
GYR 7.51 53.38 23.75
GYR-H 5.97 35.5 14.25
GYR-HF 5.94 47.38 21.88

Figure 4 shows the placement distance error across
all configurations. We note the spikes in error for
configurations GY and GY-H; these could (again)
be attributed to delays in the speech recognition
platform, where an affirmative response received
by the framework in the wrong step (or vice-versa)
could lead to a completely incorrect placement. We
also note the lower and more consistent pde for the
last two configurations of the framework, GYR-H
and GYR-HF.

Fig. 4. PDE Across Configurations

Figure 5 shows the scatter of placement distance
error versus steps until completion across all con-
figurations. Speed and accuracy in the collaborative



framework is thus represented by the lower left
corner of the chart.

We note that the fastest trial in terms of steps that
qualifies as a placement success is from configu-
ration GYR-H. We also note that the entire blue
G-cluster hovers near the middle of the chart, while
the magenta GYR-HF-cluster occupies strictly the
length of the bottom two-fifths of the chart.

Fig. 5. PDE Across Configurations

Final Discussion

TABLE VIII
PILOT STUDY CONFIGURATION SUCCESS

Configuration Success (# trials) Success (%)
G 0/8 0%

G-H 6/11 54.55%

GY 7/12 58.33%

GY-H 7/9 77.78%

GYR 5/8 62.5%

GYR-H 6/8 75%

GYR-HF 6/8 75%

Table VIII summarizes the performance of the 7
configurations of our framework. We see that the
placement success rate is approximately increasing
from the basic configuration G to the full (action +
feedback) configuration GYR-HF. From the previ-
ous tables and figures, we have also seen that the
latter two configurations perform more accurately
than the others. These results serve as a proof of
concept of the required capabilities of a collabora-
tive framework in object placement, as we discussed
in our introduction.

The GYR-H and GYR-HF configurations both:

• model how human collaborators reference
space, with language (two types) and gesture
(one type)

• offer low and/or high-level continuous feed-
back to their collaborator

• interact in real-time (though this is true of all
configurations)

The results of our pilot study have given us tangible
insights into our collaborative framework. They
form a good foundation on which to design our full
user study, and gain more statistically significant
evaluations of our work.

V. CONCLUSION

To meaningfully collaborate with humans, robots
must understand how humans collaborate with each
other. Collaboration is founded on communication,
which starts with language and gesture, but extends
far beyond into implicit and explicit feedback, and
shared knowledge and experience. This research
proposes an approach to the task of collaborative
object placement on tabletops: a framework that
models discrete space in the environment, performs
high-level reasoning for estimation of the human’s
objective using a POMDP, utilizes speech and ges-
ture for direct interaction, and provides continuous
feedback to its human collaborator. Our results,
though preliminary, suggest that each of these com-
ponents contribute to a more consistently accurate
and meaningful collaboration between human and
robot.

VI. FUTURE WORK

Practical Improvements We plan to practically
improve our framework by optimizing the current
implementation in BURLAP as well as by replacing
the speech recognition platform being used. Both
of these improvements would increase the response
time and reliability of our framework.



Evaluation As mentioned earlier in this paper, a
comprehensive user study is an important objective
in our future work.

Theoretical Approach We would like to explore
several other ways that we can gather observations
from our human collaborators. During the pilot
study, both external subjects attempted gestures to
mimic controlling the robot (pushing or pulling it
towards the goal), as well as other forms of speech
(”hot” and ”cold”, as notions of distance from the
goal). Incorporating these within our underlying
markovian process will be an interesting challenge,
and could substantially improve the accessibility of
the framework. Additionally, sentiment analysis on
our speech observations might make the framework
more sensitive to the mental state its human collab-
orator.
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