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I. INTRODUCTION

Countless collaborative tasks that we envision for humans
and robots need robotic object placement. We imagine robots
that can help humans at home (cooking meals, laying the table,
moving around furniture), and ones that can help at work
(handing a mechanic specific tools as needed, aiding a doctor
in surgery, carrying boxes and inventory in warehouses). In
almost every such task, a robot must not only be able to pick
up the object of interest, but also be able to put the object
back down, and do so in the right place.

Collaborating with a human to infer this right place is a
challenging and important problem. Three capabilities are re-
quired for a robot to perform this task. First, the robot must be
able to understand how humans reference space in the physical
world. Humans reference space with expressions that combine
speech and gesture, similar to how they refer to objects (Eldon
et al. [2]). Unlike objects however, space is a continuous
variable; this both changes how humans construct referring
expressions, and makes the inference task more complex and
computationally expensive. Second, the robot must be able to
understand and respond to its human collaborator in real-time.
Third, the robot must be able to provide continuous feedback
on its understanding to the human (termed social feedback
by Wu et al. [7]), since this can significantly speed up the
collaboration process (Clark and Krych [1]).

We propose a planning framework for collaborative object
placement in tabletop environments that has these three capa-
bilities. First, it maintains a discretized spatial model of the
placement environment to understand space-referring gesture
and speech. Second, it uses a POMDP that receives multimodal
observations and chooses multimodal actions to interact with
the human and continuously estimate their placement objec-
tive. Third, it continually quantifies its own understanding of
the objective, and visualizes this for the human.

To evaluate our proposed framework, we conducted a pilot
study where participants collaborate with our Rethink Robotics
Baxter Robot to place an object on a table. Our findings are
discussed below.

II. RELATED WORK

Kaelbling et al. [3] advocates for the modelling of sequential
planning problems in partially observable domains as Partially
Observable Markov Decision Processes. Within a POMDP, the
agent maintains, through observations and actions, a belief

state or probability distribution over possible states, in lieu
of concrete knowledge of the current state. In Wu et al. [7], a
POMDP is used to model the task of object pickup and hand-
off in a tabletop environment. Though the intended approach
and environment are similar, their focus is on a conceptually
and computationally different problem than object placement.
Still, these two works will be a foundation for ours.

In Matuszek et al. [6], a corpus of unscripted language and
gesture object-referring expressions is used to train models
to identify objects. However, these models are static in time.
In Eldon et al. [2], object-referral expressions are treated
as dynamic (occurring over time). However, this model is
more rule-based than collaborative, since robot actions are
predefined to occur at certain observation thresholds. Our
intended POMDP framework allows us to perform higher-level
reasoning over time, thus moving towards a more meaningful
collaboration experience.

III. TECHNICAL APPROACH

First, we discretize the tabletop environment into a two-
dimensional grid G to make the spatial inference more com-
putationally tractable. Then, we define the collaboration task as
a POMDP with the robot as the agent, and use an approximate
solving technique called Belief Sparse Sampling (Kearns et al.
[4]). Finally, we quantify the robot’s understanding using the
internally maintained POMDP belief state, and convey this
visually to the human.

The framework has been implemented using the Brown-
UMBC Reinforcement Learning and Planning Library
(BURLAP, [5]).

A. POMDP Definition

The proposed POMDP framework is formally defined by the
seven-tuple, (S,A, T,R,Ω, O, γ).

States S is the set of states in this domain, each of which
is a tuple (χ, λ):

• χ is the object being held by the robot
• λ is a grid cell in G where the human collaborator wants
χ to be placed (partially-observable)

Actions A is the set of actions that can be taken by the robot.
For each cell c of grid G, we define the following actions:

• PLACE, which places the object χ in cell c
• HOVER, which hovers the held object over cell c, and

asks the user a question



We also define a strictly information-gathering action:
• PROMPT, which simply waits and asks for further input

from the human
Transitions T is the transition function governing the

probability of moving to a new state, given a current state and a
particular action. We model λ has having a slow uniform decay
over all grid cells of the table grid G. This makes our planning
framework robust in situations where the human changes their
mind.

Specifically, we assume that the human collaborator has a
high probability k of referring to the same goal location λ
during the task, and therefore a probability (1−k) of changing
their mind. We further assume that switching to any other
location is equally probable. These assumptions lead to the
following transition model, for λ:

p(λt+1|λt, at) =

{
k if λt == λt+1

1−k
n−1 otherwise

(1)

where k > 0.99, at is WAIT or HOVER, and n is the
number of states in our belief, i.e, the dimensions of our grid
abstraction, G.

Reward Function R is the reward function, governing
the reward received given the current state and the action
taken. A correct PLACE returns a reward of +5. An incorrect
PLACE incurs a large negative reward of −20. The HOVER and
PROMPT actions incur small negative rewards, to encourage
the framework to choose these actions in the short term to
gather information, but to converge quickly.

Observations Ω is the set of observations, each of which
is a tuple o = (l, g), representing the human collaborator’s
language, and the human collaborator’s gestures.

The observation l is the natural, unaltered transcription of
the user’s speech. The gesture observation g is a set of four
vectors representing the world (x, y, z) coordinates of the
human collaborator’s left and right shoulders and wrists. We
use this information to calculate the targets of their pointing
gestures.

Observation Function O is the observation function, gov-
erning the probability of witnessing a particular observation,
based on the action taken and the resulting state in which said
observation occurred. Given the variables defined so far, the
function is:

O = p((lt+1, gt+1)|st+1, at) (2)

We assume (similar to [7]), the conditional independence
of the language and gesture components of our observations,
simplifying the observation function to be:

O = p(lt+1|st+1, at).p(gt+1|st+1, at) (3)

1) Language Model: Our language model can understand
two types of speech from the human:

• Simple Affirmative/Negative Expressions
• Relative Location Referring Expressions

Affirmative/Negative Expressions are expressions like ”yes,
put it there”. These expressions support simple question-
answer dialogue between robot and human. Relative Location
Referring Expressions are expressions that refer to a location
in relation to other known locations in the environment like
”to the left of your hand, Baxter”. These expressions support
descriptive dialogue between human and robot.

2) Gesture Model: Our gesture model can understand
pointing gestures from the human. These are defined as
the vector v collinear with the human collaborator’s raised
forearm, with the point of intersection p of this vector with
the tabletop considered the intended target, (similar to [2]).

For the observation function, the human collaborator’s
pointing target p is considered to be sampled from a bivariate
Gaussian (normal) distribution centered on the human’s true
goal placement location. In terms of our POMDP variables, this
is:

p(gt+1|st+1, at) ∝ N2,(µ,Σ)[(p.x, p.y)] (4)

B. Backchannel Feedback

We designed two visualizations of the POMDP belief state
to show the human collaborator, as forms of backchannel
feedback.

Heat Map The heat map visualizes the continuously updat-
ing belief state of the POMDP as heat on the tabletop grid G;
high heat corresponds to high belief that the human wants the
object in that grid cell.

Figure 1 shows three frames of the heatmap belief state
visualizer, at different stages of a placement task.

Fig. 1. Heatmap Progression

Robot Emotions We also use facial emotion to give feed-
back to the human collaborator. Specifically, we use varying
degrees of confusion to indicate when the human should
provide more information, and when the robot is becoming
confident enough to act. We calculate our degree of confusion
using the entropy of the continuously updating POMDP belief
state. The standard equation for entropy, H , is:

H(b) = −
n∑
i

P (b(i)). logP (b(i)) (5)

where n is the total number of states in the belief state, i.e.,
grid cells in G.



Fig. 2. Robotic Emotion

IV. EVALUATION

We conducted a pilot study with three subjects and three
configurations of our framework. Our objective was to test our
hypotheses that (a) a robot supporting language and gesture
would outperform one supporting only gesture, and (b) a robot
offering backchannel feedback would outperform one that does
not, in the task of object placement.

A. Framework Configurations

The set of configurations of the framework used in various
trials are available in Table I.

TABLE I
FRAMEWORK CONFIGURATIONS

Code Configuration
G Gesture only
GYR G + Yes/No Speech + Referring Speech
GYR-HF GYR + Heatmap + Facial Expressions

B. Procedure

Trial Each trial was performed with a Rethink Robotics
Baxter Robot set up in a tabletop environment. A small test
object was placed in Baxter’s right hand. A piece of tape was
placed on the table to indicate the target placement location
to each subject (completely unknown to Baxter).

Subject Each subject was instructed to stand in front of
the table and collaborate with Baxter on placing the held
object in the specified target location. They were informed that
Baxter might ask them yes/no questions. They were given a
microphone to record their speech, and were informed that a
Microsoft Kinect was tracking their movements. They were
asked to communicate in the most natural way possible, given
the capabilities of the particular configuration being used.

Experiment Each experiment involved a subject running at
least four trials for each configuration of the framework in the
table I, giving a total of at least 12 trials per subject.

Metrics Error, representing the distance between the target
and actual placement; Time, representing the time to comple-
tion of the POMDP; and Steps, representing the number of
actions planned and taken in the POMDP.

C. Pilot Study Results

Table II gives the mean-value metrics for the configurations
used. We note here that the average placement distance error
drops by almost 50% from configuration G to configuration
GYR (hyp. (a)) and drops by a further 20% from configuration
GYR to configuration GYR-HF (hyp. (b)).

The results of our pilot study have given us tangible
insights into our collaborative framework. They form a good

foundation on which to design our full user study, and thereby
gain statistically significant evaluations of our work.

TABLE II
PILOT STUDY CONFIGURATION-WISE METRICS

Configuration Error (cm) Time (s) Steps (#)
G 14.19 38.25 23.375
GYR 7.51 53.38 23.75
GYR-HF 5.94 47.38 21.88

V. CONCLUSION

To meaningfully collaborate with humans, robots must
understand how humans collaborate with each other. Col-
laboration is founded on communication, which starts with
language and gesture, but extends far beyond into implicit
and explicit feedback, and shared knowledge and experience.
This research proposes an approach to the task of collaborative
object placement on tabletops: a framework that models dis-
crete space in the environment, performs high-level reasoning
for estimation of the human’s objective using a POMDP,
utilizes speech and gesture for direct interaction, and provides
continuous feedback to its human collaborator. Our results,
though preliminary, suggest that each of these components
contribute to a more accurate and meaningful collaboration
between human and robot.
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