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Abstract In order for robots to effectively understand natural language com-
mands, they must be able to acquire meaning representations that can be
mapped to perceptual features in the external world. Previous approaches to
learning these grounded meaning representations require detailed annotations
at training time. In this paper, we present an approach to grounded language
acquisition which is capable of jointly learning a policy for following natural
language commands such as “Pick up the tire pallet,” as well as a mapping
between specific phrases in the language and aspects of the external world;
for example the mapping between the words “the tire pallet” and a specific
object in the environment. Our approach assumes a parametric form for the
policy that the robot uses to choose actions in response to a natural language
command that factors based on the structure of the language. We use a gradi-
ent method to optimize model parameters. Our evaluation demonstrates the
effectiveness of the model on a corpus of “pick up” and “go to” commands
given to a robotic forklift by untrained users.

Keywords robotics · language · machine learning · probabilistic graphical
models

1 Introduction

In order for robots to robustly understand human language, they must have
access to representations capable of mapping between symbols in the language
and aspects of the external world which are accessible via the robot’s model of
its environment. Previous symbolic approaches have represented word mean-
ings as symbols in some specific symbolic language, either programmed by
hand [Winograd, 1971, MacMahon et al., 2006] or learned [Matuszek et al.,
2010, Chen and Mooney, 2011, Liang et al., 2011]. Because word meanings
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are represented as symbols, rather than perceptually grounded features, the
mapping between these symbols and the external world must still be defined
a priori.

Although symbols are required to deal with some linguistic concepts such
as negation, quantifiers, and determiners, it is also necessary to map between
words in the language and non-symbolic, perceptual aspects of the exter-
nal world. Language grounding approaches address this problem by mapping
words in the language to groundings in the external world [Mavridis and Roy,
2006, Hsiao et al., 2008, Kollar et al., 2010, Tellex et al., 2011]. Groundings
are the specific physical concepts that are referred to by the language and can
be objects (e.g., a truck or a door), places (e.g., a particular location in the
world), paths (e.g., a trajectory through the environment), or events (e.g., a
sequence of actions taken by the robot).

Recent work has demonstrated how to learn grounded word meanings from
a parallel corpus of natural language commands paired with groundings in the
external world [Tellex et al., 2011]. However, learning the model parameters re-
quired that the parallel corpus be augmented with additional annotations spec-
ifying the alignment between specific phrases in the language and correspond-
ing groundings in the external world. Figure 1 shows an example command
from the training set paired with these alignment annotations, represented as
arrows pointing from each linguistic constituent to a corresponding grounding.
Approaches that do not require these augmentations, such as Branavan et al.
[2009] or Vogel and Jurafsky [2010], do not capture the nested hierarchical
structure of language.

Our aim is to relax these annotation requirements and develop an algo-
rithm that learns perceptually grounded, compositional word meanings from
an unaligned parallel corpus. By focusing on human-robot interaction domains,
where the human partner is giving the robot instructions for some task, we can
assume that the language specifies a high-level action that the robot should
perform. For supervision, the algorithm receives only knowledge of the correct
action, rather than requiring individual labels for all the linguistic constituents
during training, as in previous work. Our system takes as input a state/action
space for the robot defining a space of possible groundings and available ac-
tions in the external world. In addition it requires a training corpus of natural
language commands paired with a demonstration of the robot correctly ex-
ecuting the action in the environment. For example, an entry in the corpus
consists of a natural language command such as “Pick up the tire pallet” given
to a robotic forklift, paired with a video or log of the robot’s actions as drives
to the tire pallet, inserts its forks, and raises it off the ground, drives to the
truck, and sets it down.

To learn from an unaligned corpus, we derive a new training algorithm for
the Generalized Grounding Graph (G3) framework [Tellex et al., 2011] that
performs stochastic gradient descent in the model parameters, based on the
policy gradient method described by Branavan et al. [2009]. Our aim is to
find model parameters such that, as the robot executes the actions predicted
by the model, its probability of choosing the correct action is maximized. We
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Fig. 1: Sample entry from an aligned corpus, where mappings between phrases
in the language and groundings in the external world are explicitly specified
as arrows. Learning the meaning of “the truck” and “the pallet” is challenging
when alignment annotations are not known.

assume a parametric form for the model that factors according to the lin-
guistic structure of the natural language command. The system searches for
model parameters that maximize expected reward using stochastic gradient
descent. By factoring the distribution over actions according to the structure
of language, we can compute an appropriate gradient update for each factor,
allowing the system to infer groundings for each linguistic constituent even
without direct supervision. We evaluate our model in a human-robot interac-
tion domain using a dataset of natural language commands given to a robotic
forklift, collected from untrained users on the internet. Commands direct a
robotic forklift to pick up objects or drive to locations in the environment.
The evaluation demonstrates that, given a natural language command issued
in a particular context, the model is able to infer actions for the robot as
well as mappings between noun phrases in the command and objects in the
environment, despite having no direct supervision for noun phrase groundings
during training.

2 Background

We briefly review the G3 framework, introduced by Tellex et al. [2011]. In order
for a robot to understand natural language, it must be able to map between
words in a command such as “Pick up the tire pallet,” and corresponding as-
pects of the external world. Each constituent phrase in the command refers to
a particular object, place, or action that the robot should take in the environ-
ment; together we refer to these as groundings. The aim of the G3 framework
is to find the most probable groundings, γ1 . . . γN , given a parsed natural lan-
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Fig. 2: Parse tree and grounding graph for the command, “Pick up the tire
pallet.” Random variables and edges are created in the graphical model for
each constituent in the parse tree. The λ variables correspond to language;
the γ variables correspond to groundings in the external world. Edges in the
graph are created according to the parse structure of the command

guage command Λ, and the robot’s model of the environment, M :

argmax
γ1...γN

p(γ1 . . . γN |Λ,M) (1)

The environment model M consists of the robot’s location along with the
locations and geometries of objects in the external world. A robot computes
the environment model using sensor input. The computed model defines a
space of possible values for the grounding variables, γ1 . . . γN . Formally, each
γi is a tuple, (g, t, p), where:

– g is a bounding prism. It is expressed as a set of points which define a
polygon, (x1, y1), . . . , (xN , yN ), together with a height, z.

– t is a set of pre-defined textual tags, {tag1, . . . , tagM}, which are the output
of perceptual classifiers.

– p ∈ R
T×7 is a sequence of T points. Each point is a pose for the robot. It

consists of a tuple (τ, x, y, z, roll, pitch, yaw) representing the location and
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orientation of the grounding at time τ . Locations between two times are
interpolated linearly.

Groundings are objects, places, paths or events in the external world. An
object such as a pallet is represented in the map as a three-dimensional ge-
ometric shape, along with a set of symbolic tags that might be produced by
an object classifier, such as “pallet” or “truck.” A place grounding represents
a particular location in the map, and would have no tags and a zero-length
trajectory. A path grounding consists of the trajectory of a point-based prism.
An event grounding might consist of the robot and its trajectory over time,
as it picks up a pallet.1 The type of a grounding variable is inferred from
the associated syntactic constituent using a template-based algorithm. We as-
sume that the robot has access to the environment model whenever it infers
groundings for a natural language command. For brevity, we omit M from
future equations in this section.

To learn the distribution in Equation 1, one standard approach is to factor
it based on certain independence assumptions, then train models for each fac-
tor. Natural language has a well-known compositional, hierarchical argument
structure [Jackendoff, 1983], and a promising approach is to exploit this struc-
ture in order to factor the model. The G3 framework takes as input a natural
language command and uses the parse structure of the language to define the
random variables and factors in a graphical model.

However, if we define a directed model over these variables (e.g., p(γ1 . . . γN |Λ))
we must assume a possibly arbitrary order to the conditional γi factors. For
example, for a phrase such as “the tire pallet near the other skid,” we could
factorize in either of the following ways:

p(γtires, γskid|Λ) = p(γskid|γtires, Λ)× p(γtires|Λ) (2)

p(γtires, γskid|Λ) = p(γtires|γskid, Λ)× p(γskid|Λ) (3)

Depending on the order of factorization, we will need different conditional
probability tables that correspond to the meanings of words in the language.
To resolve this issue, another approach is to use Bayes’ Rule to estimate
p(Λ|γ1 . . . γN ), but this approach would require normalizing over all possible
words in the language Λ. Another alternative is to use an undirected model
such as a conditional random field, but this approach is intractable because it
requires normalizing over all possible values of all γi variables in the model,
including continuous attributes such as location and size.

To address these problems, the G3 framework introduces a correspondence
vector Φ to capture the dependency between γ1 . . . γN and Λ. Each entry in
φi ∈ Φ corresponds to whether linguistic constituent λi ∈ Λ corresponds to the
groundings associated with that constituent. For example, the correspondence
variable would be True for the phrase “the tire pallet” and a grounding of an
actual pallet containing tires, and False if the grounding was a different object,

1 In general, an event could consist of any state change in the environment, for example
the generation of an appropriate sound for the command, “Speak your name.” In this paper,
we focus on events which can be represented geometrically, within this framework.
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such as a generator pallet or a truck. We assume that γ1 . . . γN are independent
of Λ unless Φ is known. Introducing Φ enables factorization according to the
structure of language with local normalization at each factor over a space of
just the two possible values for φi. At inference time, these locally normalized
factors can be simply multiplied together without the need to compute a global
normalization constant, as would be required for a Markov random field or
conditional random field.

Using the correspondence variable, we can write:

argmax
γ1...γN

p(γ1 . . . γN |Φ,Λ) (4)

To perform inference, the value of the correspondence variable vector Φ is
True, indicating that the inference is searching for groundings which corre-
spond to the words in the natural language command. When the correspon-
dence vector takes on the value of True, this maximization is identical to
equation 1, except that Φ is listed as a given variable. Listing Φ as a given
variable makes explicit the assumption that all linguistic constituents and as-
sociated groundings correspond. This inference is equivalent to maximizing
the joint distribution of all groundings γ1 . . . γN , Φ and Λ:

argmax
γ1...γN

p(γ1 . . . γN , Φ, Λ). (5)

Note that even though Equation 5 uses the joint distribution, Λ and Φ are fixed,
and we optimize over γ1 . . . γN . Next we rewrite as a conditional distribution
on Φ multiplied by a prior:

argmax
γ1...γN

p(Φ|Λ, γ1 . . . γN )p(Λ, γ1 . . . γN ) (6)

We assume that Λ and γ1 . . . γN are independent when Φ is not known, as in
the graphical model shown in Figure 2, yielding:

argmax
γ1...γN

p(Φ|Λ, γ1 . . . γN )p(Λ)p(γ1 . . . γN ) (7)

This independence assumption is justified because if we do not know whether
γ1 . . . γN correspond to Λ, then the language does not tell us anything about
the groundings.

Finally, for simplicity, we assume that any object in the environment is
equally likely to be referenced by the language, which amounts to a constant
prior on γ1 . . . γN .2 We ignore p(Λ) since it does not depend on γ1 . . . γN ,
leading to:

argmax
γ1...γN

p(Φ|Λ, γ1 . . . γN ) (8)

2 In the future, we plan to incorporate models of attention and salience into this prior.
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We factor the model according to the hierarchical, compositional linguistic
structure of the command:

p(Φ|Λ, γ1 . . . γN ) =
∏

i

p(φi|λi, γi1 . . . γik) (9)

The specific random variables and dependencies are automatically extracted
from the parse tree and constituent structure of the natural language com-
mand; the details of this factorization are described formally by Tellex et al.
[2011]. Parses can be extracted automatically, for example with the Stanford
Parser [de Marneffe et al., 2006] or annotated using ground-truth parses. We
call the resulting graphical model the grounding graph for a natural language
command. Figure 2 shows the parse tree and graphical model generated for
the command “Pick up the pallet.” The random variable φ2 is associated with
the constituent “the pallet” and the grounding variable γ2. The random vari-
able φ1 is associated with the entire phrase, “Pick up the pallet” and depends
on both grounding variables: γ1, which is the action that the robot takes,
and its argument, γ2, which is the object being manipulated. The λi variables
correspond to the text associated with each constituent in the parse tree.

We assume that each factor takes a log-linear form with feature functions
fj and feature weights θj .

p(Φ|Λ, γ1 . . . γN ) =
∏

i

1

Z
exp





∑

j

θjfj(φi, λi, γi1 . . . γik)



 (10)

This function is convex and can be optimized with gradient-based meth-
ods [McCallum, 2002]. Training data consists of a set of natural language
commands together with positive and negative examples of groundings for
each constituent in the command. We refer to this dataset as an aligned cor-
pus because each constituent in the command is aligned with a corresponding
grounding in the environmental context. In contrast, the aim of the current
work is to remove the requirement for this extra alignment annotation.

Features correspond to the degree to which the γ1 . . . γN correctly ground
λi. These features define a perceptual representation in terms of a mapping
between the grounding and words in the language. For example, for a relation
such as “on,” a natural feature is whether the grounding corresponding to
the head noun phrase is supported by the grounding corresponding to the
argument noun phrases. However, the feature supports(γi, γj) alone is not
enough to enable the model to learn that “on” corresponds to supports(γi, γj).
Instead we need a feature that also takes into account the word “on:”

supports(γi, γj) ∧ (“on” ∈ λi) (11)

Thus features consist of the Cartesian product of perceptual features such
as supports crossed with the presence of words in the linguistic constituent
associated with the corresponding factor in the grounding graph.
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The system follows natural language commands by optimizing the objec-
tive in Equation 8. It carries out approximate inference by performing beam
search over γ1 . . . γN . It searches over possible bindings for these variables in
the space of values defined in the environment model M . It then computes the
probability of each assignment using Equation 8; the result is the maximum
probability assignment of values to all the variables γ1 . . . γN . Although we are
using p(Φ|Λ, γ1 . . . γN ) as the objective function, Φ is fixed, and the γ1 . . . γN
are unknown. This approach is valid because, given our independence assump-
tions, p(Φ|Λ, γ1 . . . γN ) corresponds to the joint distribution over all the vari-
ables given in Equation 5. We discretize the space of possible groundings to
make this search problem tractable. If no correct grounding exists in the space
of possible values, then the system will not be able to find the correct value;
in this case it will return the best value that it found.

3 Approach

Our goal is to learn model parameters for the G3 framework from an unaligned
corpus of natural language commands paired with robot actions. Previously,
the system learned model parameters Θ using an aligned corpus in which val-
ues for all grounding variables, γ1 . . . γN , were known at training time, and
annotators provided both positive and negative examples for each factor. If
the alignments between language and grounding variables are not known, then
Equation 9 becomes ill-posed. Specifically, if the alignments are not known,
then it is not known which grounding variables to instantiate for the γi1 . . . γik
that match each λi. If the weights are known, then at inference time, one can
search for the alignments of λi to γi that maximize the posterior likelihood of
Φ. During training, however, learning the weights can no longer be posed as
the same convex supervised learning problem. Providing the alignments in the
training data is a fundamental limit of the scalability of the approach. Exam-
ples of natural language commands matched with demonstrated robot actions
can be easily collected from untrained users at a large scale using crowdsourc-
ing such as Amazon Mechanical Turk. In contrast, labeling alignments requires
trained annotators, takes more time to label each example, and raises issues
of inter-rater agreement.

We now describe how to relax the annotation requirement so that only the
top-level action for each command needs to be observed in order to train the
model. We are given a corpus of D training examples. Each example d consists
of a four-tuple, (Λd, Γ d,Md, gda) where:

– Λd is a parsed natural language command.
– Γ d is a vector of grounding variables γ1 . . . γN .
– Md is an environmental context, consistent of a set of objects with a loca-

tion, geometry, and set of perceptual tags.
– gda is a demonstration of the robot correctly executing the natural language

command.
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Each environmental context will have a different set of objects and available
actions for the robot. For example, in the robotic forklift domain, one training
example might contain a command given in an environment with a single tire
pallet; another might contain a command given in an environment with two
box pallets and a truck. We define a discrete space of actions for the robot: it
can drive near objects in the environment, pick them up, and put them down
in discrete locations. The domain of possible values for a grounding variable
γ ∈ Γ d is specified by the environmental context, but the actual values for
these variables are not known.

We augment each example with a key piece of supervision: a demonstration
of the robot correctly following a natural language command. This demonstra-
tion corresponds to an observed value gda for a specific grounding variable in
the graph. This variable, γa, corresponds to the action sequence the robot
should execute when following the entire natural language command. We refer
to this variable as the top-level action variable, since it corresponds to the root
node of the parse tree for a natural language command. Our approach uses
the supervision obtained from generating the correct top-level action to gen-
erate the gradient for all factors in the grounding graph. Each environmental
context defines a low-level state/action space for the robot. A state consists of
the robot’s location and the location of all known objects in the environment.
An action consists of moving to one of a few predefined locations (for example,
near each object in the environment), or picking up manipulable objects in the
environment. These actions are the space of possible values for the variable
γd
a .

Next, we define a decision problem for each example d in the corpus. Each
choice in the decision problem consists of binding a value to all grounding
variables γi in the grounding graph. For instance, for the command, “Go to
the tire pallet,” the grounding variables would consist of γpallet (mapping to
the phrase “the tire pallet”) and γgo (mapping to “Go to the tire pallet.”)
Actions in the decision problem consist of binding an object to γpallet and
an action taken by the robot in the physical world to γgo. For example, in
an environment with a tire pallet (pallet 1) and a box pallet (pallet 2), the
decision problem would contain the following actions:

action 1 γgo = [Drive to location 1], γpallet = [pallet 1]
action 2 γgo = [Drive to location 1], γpallet = [pallet 2]
action 3 γgo = [Drive to location 2], γpallet = [pallet 1]
action 4 γgo = [Drive to location 2], γpallet = [pallet 2]
action 5 γgo = [Pick up pallet 1], γpallet = [pallet 1]
action 6 γgo = [Pick up pallet 1], γpallet = [pallet 2]
action 7 γgo = [Pick up pallet 2], γpallet = [pallet 1]
action 8 γgo = [Pick up pallet 2], γpallet = [pallet 2]

We define a reward function for our decision problem based on choosing the
correct grounding gda for the top-level action variable, γa ∈ Γ d for a training
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example d:

r(Γ d, gda) =

{

1 if γa = gda
−1 otherwise

(12)

If location 1 is assumed to be close to pallet 1, then actions 1 and 2 would
receive +1 reward, and the rest would receive −1 reward. However, if pallet 1
is a tire pallet, and pallet 2 is a box pallet, then only action 1 gets all variables
correct. Conversely, actions 3, 5, and 7 obtain negative reward for choosing
the wrong value for γgo, even though the grounding for γpallet is correct.

3

Our aim is to learn model parameters to jointly predict top-level actions,
which are directly rewarded, as well as values for other grounding variables,
even though no reward signal is observed directly for these variables. Our
hypothesis is that learning to predict other grounding variables is necessary
in order to choose correct actions. For example, consider the command in
the example given above, “Go to the tire pallet.” If the robot grounds the
wrong object, such as a box pallet, to the phrase “the tire pallet,” then it
will compute features associated with the wrong landmark object, leading to
predicting incorrect actions. For a robot to predict correct actions, it must
model the factored structure of language and propagate the error signal to
each term. Over many examples the system uses this signal to infer values
for the lower-level grounding variables which enables it to infer a policy for
following natural language commands.

We define a sampling distribution to choose values for the grounding vari-
ables in the model using the G3 framework with parameters Θ:

p(Γ d|Φd, Λd,Md, Θ) (13)

Here the values of Λd are known, and the values of the correspondence vari-
able vector Φ are fixed to True. Our aim is to find model parameters that max-
imize expected reward when drawing values for Γ d from p(Γ d|Φd, Λd,Md, Θ):

argmax
Θ

∑

d∈D

Ep(Γd|Φd,Λd,Md,Θ)r(Γ
d, gda) (14)

Expanding the expectation we have:

argmax
Θ

∑

d

∑

Γd

r(Γ d, gda)× p(Γ d|Φd, Λd,Md, Θ) (15)

Here Γ d ranges over all possible values for the grounding variables γ1 . . . γN ,
given the environmental context, Md.

We can factor this distribution as in the G3 framework described in Sec-
tion 2. We use stochastic gradient ascent in the space of model parame-
ters [Branavan et al., 2009] to maximize expected reward. We assume the

3 We use a +1/-1 reward function rather than a 0-1 loss function because the gradient
update will be scaled by the magnitude of the reward function, so a 0-1 loss function will
perform no gradient update when the model infers the correct action.
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Input:

1: Initial values for parameters, Θ0.
2: Training dataset, D.
3: Number of iterations, T .
4: Step size, α.
5:
6: Θ ← Θ0

7: for t ∈ T do

8: for d ∈ D do

9: ∇Θ ←
∂

∂θk
Ep(Γd|Φd,Λd,Md,Θ)r(Γ

d, gda)

10: end for

11: Θ ← Θ + α∇Θ

12: end for

Output: Estimate of parameters Θ

Fig. 3: Training algorithm.

model takes a factored form following the G3 framework, based on the parse
structure of a natural language command. This factorization enables the com-
putation of gradient updates to the terms corresponding to each linguistic
constituent, using only the top-level reward signal: whether the model infers
the correct action for the command.

First, we take the derivative of the expected reward for a single example
with respect to Θ. (We drop the d subscripts for brevity.)

∂

∂θk
Ep(Γ |Φ,Λ,M,Θ)r(Γ, ga) =

∑

Γ

r(Γ, ga)
∂

∂θk
p(Γ |Φ,Λ,M,Θ) (16)

The derivation for the derivative appears in Section 8, yielding:

= Ep(Γ |Λ,Φ,M,Θ)r(Γ, ga)×





∑

j

fk(φj , Γ, Λ,M)− Ep(φ′|Γ,Λ,M,Θ) [fk(φ
′, Γ, Λ,M)]





(17)

The training algorithm is given in Figure 3. Equation 17 is exact, but due
to the large space of possible groundings, we approximate the expectation over
Γ by sampling values for the Γ using current model parameters. In complex
environments, there are many more actions that obtain negative reward than
positive reward. To compensate for this, we normalize negative reward so that
the total reward from actions with negative reward equals the sum of reward
from actions with positive reward.

When performing gradient updates, we use 40 random restarts with initial
values for Θ drawn uniformly from [0, 0.00001] and take the parameters from
the run that earns the most reward on the training set. We use 0.001 for the
step size parameter α. The values correspond to the magnitude of the gradient
update made for each iteration and affect the speed of convergence. We set
them to small values so that the algorithm converges slowly but does not
overstep an optimum. Our objective function is discontinuous and is not of
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a form known to converge using gradient descent. However, gradient descent
in objective functions with similar form have been shown to work well in
practice [Branavan et al., 2009, Vogel and Jurafsky, 2010].

4 Results

To evaluate the learning algorithm we use a corpus of natural language com-
mands given to a robotic forklift. We collected a corpus of natural language
commands paired with robot actions by showing annotators on Amazon Me-
chanical Turk a video of the robot executing an action in simulation and asking
them to describe in words they would use to command an expert human op-
erator to carry out the commands in the video. We refer to each video as
a scenario; we collected multiple commands for each scenario. Frames from
a video in our corpus, together with commands for that scenario appear in
Figure 4.

Since commands often spanned multiple parts of the video, we segment
each log according to where each command begins and ends. We use 214 ex-
ample commands paired with contextual information in the training set, and
93 in the test set, split randomly by scenario. That is, no scenarios in the
training set appear in the test set, although scenarios consist of similar envi-
ronments and the robot takes similar actions: driving around the environment
and moving objects around. Each command has on average 11 words and the
total vocabulary was 266 words. Commands were given in environments that
contained anywhere from two to six objects, with an average of four objects in
each environment. We annotated each command in the dataset with a parse,
as well as associated groundings. For each linguistic constituent in the parsed
command, we annotated the associated grounding in the environment.

We report two measures of performance. First, we report the percentage of
commands for which the robot executed the command correctly, as determined
by our annotations. This metric corresponds to how well the system follows
commands but does not assesses how accurately it grounded different parts of
a command. Second, we report the fraction of concrete noun phrases in the
corpus that the system grounded to the correct object in the external world.
That is, for each noun phrases in the ground truth parses, we report whether
the system correctly inferred a grounding for each concrete noun phrase in the
command. This metric corresponds to how well the system learned to recognize
the mapping between noun phrases in the command and corresponding objects
in the external world, even without direct supervision during training.

For comparison, we present several baselines. The random baseline shows
performance achieved when choosing groundings using the random model pa-
rameters which were used to initialize the gradient descent algorithm. Second,
we present the performance of a fully supervised model trained using an aligned
corpus of positive and negative examples. Each linguistic constituent in the
supervised dataset is paired with an annotated grounding, together with an
indicator variable that encodes whether the annotation matches the words
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(a) t=0 (b) t=20 (c) t=30

Pick up pallet with refridgerator [sic] and place on truck to the left.

A distance away you should see a rectangular box. Approach it slowly and load it up onto your forklift. Slowly proceed to

back out and then make a sharp turn and approach the truck. Raise your forklift and drop the rectangular box on the back of the

truck.

Go to the pallet with the refrigerator on it and pick it up. Move the pallet to the truck trailer. Place the pallet on the

trailer.

Pick up the pallet with the refrigerator and place it on the trailer.

(d) Commands

Fig. 4: Frames from a video in our dataset, paired with natural language
commands.

in the language, as in the original G3 framework [Tellex et al., 2011]. This
model is trained using the same features and parameters as the model trained
from unaligned data. Finally, we present performance of a model trained us-
ing randomly assigned groundings. This baseline assesses the importance of
performing gradient updates for each linguistic constituent in an example in
a unified way rather than separately.

We also present results on a system trained using fully automatic parses,
as well as trained using ground-truth parses. However, we use the annotated
parses and groundings for assessing system performance to avoid having to an-
notate groundings for linguistic constituents generated from incorrect parses.
Using the same parse structure also aids in comparing algorithms, since all
approaches use the same parse structure when presenting evaluation results.

Table 1a shows performance using these two metrics on a training set.
Note that the unaligned training algorithm significantly improves performance
on the training set compared to starting performance. This improvement is
not surprising for predicting actions, because the algorithm receives direct
supervision for the action. However, the algorithm is also able to correctly
infer groundings for many noun phrases in the training set, despite not having
access to this information during training. The random groundings baseline
also achieves good performance on the test set at predicting the top-level
action, but does not correctly predict as many noun phrases.

Next, we report performance on a test set to assess generalization to novel
commands given in different environments, in Table 1b. The trained system
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% Correct
Actions Concrete Noun Phrases

Random Model Parameters 35% 39%
Random Groundings 68% 46%

Unaligned 65% 65%
Unaligned (automatic parsing) 49% 61%

Fully Supervised 55% 79%

(a) Training (all) — 214 actions, 183 noun phrases

% Correct
Actions Concrete Noun Phrases

Random Model Parameters 27% 37%
Random Groundings 56% 38%

Unaligned 57% 66%
Unaligned (automatic parsing) 48% 54%

Fully Supervised 56% 79%

(b) Testing (all) — 93 actions, 71 noun phrases

% Correct
Concrete Noun Phrases

Random Model Parameters 49%
Random Groundings 28%

Unaligned 67%
Unaligned (automatic parsing) 75%

Fully Supervised 84%

(c) Testing (Noun phrases only)

Table 1: Results on the training set and test set.

is able to achieve high performance at both inferring correct actions as well
as correct object groundings using the parameters learned from the training
set. It achieves this performance despite never observing groundings for any
linguistic constituent during training other than the top-level verb phrase.
Unlike the random groundings method, it also achieves high performance at
predicting groundings noun phrase groundings.

The random groundings method achieves high performance at predicting
the top level action but performs worse at predicting objects. The performance
it does achieve at predicting object groundings is due to its ability to pick
top-level actions associated with the natural language commands. It predicts
top-level actions by learning a model for the vector associated with the verb
phrase and its immediate arguments. For example, for an action like “pick up,”
the random groundings method will be biased towards actions that involve
picking up an object that is bound to the linguistic argument in the noun
phrases. This bias from the action causes it to correctly infer some object
groundings, but the learned model parameters for noun phrases are unable to
infer correct groundings in isolation, without an associated verb phrase. To
test this hypothesis, we inferred groundings for noun phrases in the test set
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only, without using information from the top level action. Results appear in
Table 1c. Here the random groundings method performs very poorly, at chance
levels, compared to the unaligned method. This result demonstrates that the
unaligned method is not only learning models for predicting actions but is
also able to learn word meanings for noun phrases. These learned meanings
can be used to make predictions in a test set. We hypothesize that models for
understanding each part of the language will lead to higher performance in
more complex domains. In additions, we have demonstrated how they support
information-theoretic dialog: by estimating the entropy over the groundings
for each constituent, the robot can intelligently pick questions whose answers
improves its accuracy at choosing actions in response to a natural language
command [Tellex et al., 2012]. This approach would not work without models
for grounding each constituent.

The fully supervised method performs surprisingly poorly on this dataset.
We believe this poor performance is due to lack of sufficient annotated train-
ing data. Although we hypothesize that the fully-supervised approach would
outperform our method given enough data, creating enough annotations is an
expensive task. To generate the supervised training data, we sampled actions
from the decision problem defined in Section 3 and annotated each factor in
the associated grounding graph with the correct value for φ, depending on
whether or not the sampled grounding was correct (φ = True) or incorrect
(φ = False). This approach yielded good models for noun phrase groundings,
as evidenced by the supervised method’s high performance in Table 1c. How-
ever, because there are many more actions, the supervised learner did not yield
good performance at predicting the top-level action. Given the very many pos-
sible negative instances, it was very difficult to provide enough labeled training
instances to learn well. This is further, if somewhat anecdotal, evidence to sup-
port the unsupervised learning approach. In contrast, the supervised method
outperforms the unaligned method when focusing on a verb which appears
frequently in the corpus in a simple syntactic environment: “pick up.” (83%
for the supervised method, versus 78% for the unaligned method).

Finally, to emphasize that the system is learning grounded, functional word
meanings, we present a visualization of the probability distribution learned for
the word “to” in Figure 5. Each pixel z is colored according to p(φ = True|λ =
“to”, γz), where the path γz starts at the left side of the image and ends at
the location of pixel z. Red is high probability and blue is low probability.
Note that the color scale is normalized within each image, but not normalized
across images. Artifacts are due to a limited amount of training data and
the discretization of continuous feature values (for example, the normalized
distance between the end of the trajectory and the tire pallet.) In both cases,
there is a high-probability peak near the landmark object. These heat maps
emphasize that the algorithm has learned distributions corresponding to the
meanings of words such as “to” and “pick up.” It has not simply learned a
mapping between a word such as “to” and a symbol such as TO. Instead it
has a learned a distribution that can be called with any candidate grounding
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Fig. 5: Heat map showing the learned distribution for “to the tire pallet.”
probability.

and returns the probability that the words in the language match a path in
the world.

Failures occurred in the system for several reasons. Sometimes, the com-
mand requested an action that is not in the action space of the robot. For
example, the command “Move slightly forward” requires a very small motion
on the part of the robot, while “move forward in an ‘S’ shape” requires com-
plex motion planning. These actions are not in the search space of possible
actions, so it is not possible for the robot to behave correctly. Other commands
used less frequent language. For example, one person instructed the robot to
“loiter around momentarily;” the word “loiter” appeared only in the test set
and not in the training set. Finally, some commands contained ambiguous lan-
guage, such as “Pick it up,” where the system inferred that it should pick up
an object, but acted upon the wrong object.

5 Related Work

Beginning with SHRDLU [Winograd, 1971], many systems have exploited the
compositional structure of language to statically generate a plan correspond-
ing to a natural language command [Hsiao et al., 2008, MacMahon et al.,
2006, Skubic et al., 2004, Dzifcak et al., 2009]. Our work moves beyond this
framework by defining a probabilistic graphical model according to the struc-
ture of the natural language command, inducing a distribution over plans and
groundings.

Semantic parsing is the problem of mapping between sentences in natural
language and formal semantic representations. Early work in semantic parsing
uses supervised data consisting of sentences paired with logical form [Thomp-
son and Mooney, 2003, Zettlemoyer and Collins, 2005, Wong and Mooney,
2007, Piantadosi et al., 2008, Kwiatkowski et al., 2010]; some of these ap-
proaches have been applied to robotics [Matuszek et al., 2012b, Chen and
Mooney, 2011]. Newer approaches learn symbolic word meanings with less su-
pervision; Poon and Domingos [2009] presents an approach to unsupervised
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semantic parsing, while other approaches use an external reward signal as in
this paper [Branavan et al., 2009, Vogel and Jurafsky, 2010, Liang et al., 2011,
Clarke et al., 2010]. The current work, in contrast, learns grounded meaning
representations in terms of perceptual features rather than symbols. Previ-
ous models that learned grounded word meanings [Tellex et al., 2011, Kollar
et al., 2010] required detailed alignment annotations between constituents in
the language and objects, places, paths, or events in the external world; the
current work relaxes these annotation requirements. Matuszek et al. [2012a]
describe a model for jointly learning word meanings and perceptual features
for referring expressions, rather than both noun and verb phrases as in this
work.

There has been a variety of work in transferring action policies between
a human and a robot. In imitation learning, the goal is to create a system
that can watch a teacher perform an action, and then reproduce that action
[Kruger et al., 2007, Chernova and Veloso, 2009, Schaal et al., 2003, Ekvall
and Kragic, 2008]. Rybski et al. [2007] developed an imitation learning system
that learns from a combination of imitation of the human teacher, as well as
natural language input. Our work differs in that the system must infer word
meanings from the demonstrations, and then use those learned meanings later
to infer new actions for different commands in different contexts

6 Conclusion

In this paper we described an approach for learning perceptually grounded
word meanings from an unaligned parallel corpus of language paired with
robot actions. The training algorithm jointly infers policies that correspond
to natural language commands as well as alignments between noun phrases in
the command and groundings in the external world. In addition, our approach
learns grounded word meanings or distributions corresponding to words in the
language. We presented an evaluation on a small corpus, demonstrating that
the system is able to infer meanings for concrete noun phrases despite having
no direct supervision for these values.

Our approach points the way towards a framework that can learn a large
vocabulary of general grounded word meanings, enabling systems that flexibly
respond to a wide variety of natural language commands given by untrained
users. There are many directions for improvement. We plan to train our system
using a large dataset of language paired with robot actions in more complex
environments, and on more than one robotic platform. Identifying a set of
perceptual features that generalizes across these different contexts remains an
open problem. As long as perceptual features are available, the system is able
to learn meanings for adjectives and prepositions. For example, the training
corpus contains phrases such as “red and black pallet,” and the system learns
corresponding feature weights for the words “red” and “black.” However as the
number of features increases, the learning problem becomes more challenging,
and if features are unavailable, the system will fail to learn word meanings. For
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example, phrases such as “left” and “right” are challenging because features
need to take into account the frame-of-reference being used by the speaker.
Integrating our approach with a richer symbolic semantics could enable it to
handle more complex linguistic phenomena, including quantifiers, negation,
and determiners.

7 Acknowledgments

We would like to thank the anonymous reviewers for their insightful comments,
which significantly shaped the paper. We would also like to thank Thomas
Howard for his helpful comments on a draft of this paper. This work was
sponsored by the Robotics Consortium of the U.S Army Research Laboratory
under the Collaborative Technology Alliance Program, Cooperative Agree-
ment W911NF-10-2-0016, and by the Office of Naval Research under MURIs
N00014-07-1-0749 and MURI N00014-11-1-0688, and the DARPA BOLT pro-
gram under contract HR0011-11-2-0008.

References

S. R. K. Branavan, H. Chen, L. S. Zettlemoyer, and R. Barzilay. Reinforcement
learning for mapping instructions to actions. In Proceedings of ACL, page
82–90, 2009.

D. L. Chen and R. J. Mooney. Learning to interpret natural language naviga-
tion instructions from observations. In Proc. AAAI, 2011.

S. Chernova and M. Veloso. Interactive policy learning through confidence-
based autonomy. JAIR, 34(1):1–25, 2009.

J. Clarke, D. Goldwasser, M. Chang, and D. Roth. Driving semantic parsing
from the world’s response. In Proceedings of the Fourteenth Conference
on Computational Natural Language Learning, pages 18–27. Association for
Computational Linguistics, 2010.

M. de Marneffe, B. MacCartney, and C. Manning. Generating typed depen-
dency parses from phrase structure parses. In Proc. Int’l Conf. on Language
Resources and Evaluation (LREC), pages 449–454, Genoa, Italy, 2006.

J. Dzifcak, M. Scheutz, C. Baral, and P. Schermerhorn. What to do and how
to do it: Translating natural language directives into temporal and dynamic
logic representation for goal management and action execution. In Proc.
IEEE Int’l Conf. on Robotics and Automation (ICRA), pages 4163–4168,
2009.

S. Ekvall and D. Kragic. Robot learning from demonstration: a task-level
planning approach. International Journal of Advanced Robotic Systems, 5
(3), 2008.

K. Hsiao, S. Tellex, S. Vosoughi, R. Kubat, and D. Roy. Object schemas
for grounding language in a responsive robot. Connection Science, 20(4):
253–276, 2008.



Learning Perceptually Grounded Word Meanings From Unaligned Parallel Data 19

R. S. Jackendoff. Semantics and Cognition, pages 161–187. MIT Press, 1983.
T. Kollar, S. Tellex, D. Roy, and N. Roy. Toward understanding natural
language directions. In Proc. ACM/IEEE Int’l Conf. on Human-Robot In-
teraction (HRI), pages 259–266, 2010.

V. Kruger, D. Kragic, A. Ude, and C. Geib. The meaning of action: A review
on action recognition and mapping. Advanced Robotics, 21(13), 2007.

T. Kwiatkowski, L. Zettlemoyer, S. Goldwater, and M. Steedman. Inducing
probabilistic ccg grammars from logical form with higher-order unification.
In Proceedings of the 2010 conference on empirical methods in natural lan-
guage processing, pages 1223–1233. Association for Computational Linguis-
tics, 2010.

P. Liang, M. I. Jordan, and D. Klein. Learning dependency-based composi-
tional semantics. In Proc. Association for Computational Linguistics (ACL),
2011.

M. MacMahon, B. Stankiewicz, and B. Kuipers. Walk the talk: Connecting
language, knowledge, and action in route instructions. In Proc. Nat’l Conf.
on Artificial Intelligence (AAAI), pages 1475–1482, 2006.

C. Matuszek, D. Fox, and K. Koscher. Following directions using statistical
machine translation. In Proc. ACM/IEEE Int’l Conf. on Human-Robot
Interaction (HRI), pages 251–258, 2010.

C. Matuszek, N. FitzGerald, L. Zettlemoyer, L. Bo, and D. Fox. A joint model
of language and perception for grounded attribute learning. arXiv preprint
arXiv:1206.6423, 2012a.

C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox. Learning to parse natural
language commands to a robot control system. In Proc. of the 13th Intl
Symposium on Experimental Robotics (ISER), 2012b.

N. Mavridis and D. Roy. Grounded situation models for robots: Where words
and percepts meet. In 2006 IEEE/RSJ International Conference on In-
telligent Robots and Systems, pages 4690–4697. IEEE, Oct. 2006. ISBN
1-4244-0258-1.

A. K. McCallum. MALLET: A machine learning for language toolkit.
http://mallet.cs.umass.edu, 2002.

S. Piantadosi, N. Goodman, B. Ellis, and J. Tenenbaum. A bayesian model of
the acquisition of compositional semantics. In Proceedings of the Thirtieth
Annual Conference of the Cognitive Science Society, 2008.

H. Poon and P. Domingos. Unsupervised semantic parsing. In Proceedings of
the 2009 Conference on Empirical Methods in Natural Language Processing:
Volume 1-Volume 1, pages 1–10. Association for Computational Linguistics,
2009.

P. Rybski, K. Yoon, J. Stolarz, and M. Veloso. Interactive robot task training
through dialog and demonstration. In Proceedings of HRI, page 56. ACM,
2007.

S. Schaal, A. Ijspeert, and A. Billard. Computational approaches to motor
learning by imitation. Phil. Trans. R. Soc. Lond. B, (358), 2003.

M. Skubic, D. Perzanowski, S. Blisard, A. Schultz, W. Adams, M. Bugajska,
and D. Brock. Spatial language for human-robot dialogs. IEEE Trans. on



20 Stefanie Tellex et al.

Systems, Man, and Cybernetics, Part C: Applications and Reviews, 34(2):
154–167, 2004. ISSN 1094-6977.

S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller, and
N. Roy. Understanding natural language commands for robotic navigation
and mobile manipulation. In Proc. AAAI, 2011.

S. Tellex, P. Thaker, R. Deits, T. Kollar, and N. Roy. Toward information the-
oretic human-robot dialog. In Proceedings of Robotics: Science and Systems,
Sydney, Australia, July 2012.

C. A. Thompson and R. J. Mooney. Acquiring word-meaning mappings for
natural language interfaces. Journal of Artificial Intelligence Research, 18:
1–44, 2003.

A. Vogel and D. Jurafsky. Learning to follow navigational directions. In Proc.
Association for Computational Linguistics (ACL), pages 806–814, 2010.

T. Winograd. Procedures as a Representation for Data in a Computer Program
for Understanding Natural Language. PhD thesis, Massachusetts Institute
of Technology, 1971. Ph.D. thesis.

Y. Wong and R. Mooney. Learning synchronous grammars for semantic pars-
ing with lambda calculus. In Association for Computational Linguistics,
volume 45, page 960, 2007.

L. S. Zettlemoyer and M. Collins. Learning to map sentences to logical form:
Structured classification with probabilistic categorial grammars. In UAI,
pages 658–666, 2005.

8 Appendix

We take the derivative of the expected reward for a single example with respect
to Θ. (We drop the d superscripts for brevity.)

∂

∂θk
Ep(Γ |Φ,Λ,M,Θ)r(Γ, ga) =

∑

Γ

r(Γ, ga)
∂

∂θk
p(Γ |Φ,Λ,M,Θ) (18)

Focusing on the inner term, we expand it with Bayes’ rule:

∂

∂θk
p(Γ |Φ,Λ,M,Θ) =

∂

∂θk

p(Φ|Γ,Λ,M,Θ)p(Γ |Λ,M,Θ)

p(Φ|Λ,M,Θ)
(19)

We assume the priors do not depend on Θ, as well as a uniform prior over
groundings and correspondence variables:

∂

∂θk
p(Γ |Φ,Λ,M,Θ) =

p(Γ |M)

p(Φ|Λ)

∂

∂θk
p(Φ|Γ,Λ,M,Θ) (20)

Previously, the G3 framework required alignment annotations or observed
values for the grounding variables to update model parameters. Here, we up-
date model parameters based on the top-level reward and propagate that signal
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down to factors for each linguistic constituent. Although updates for any in-
dividual sample will be noisy, over many updates, the algorithm will converge
to a local optimum.

Next, we take the partial derivative of the likelihood of Φ. For brevity,
we compress Γ , Λ, and M in the variable X. First, we assume each factor is
independent:

∂

∂θk
p(Φ|X,Θ) =

∂

∂θk

∏

i

p(φi|X,Θ) (21)

Next, we expand the right side of Equation 21, taking the derivative using the
product rule:

∂

∂θk
p(Φ|X,Θ) =

∏

i

p(φi|X,Θ)×





∑

j

∂
∂θk

p(φj |X,Θ)

p(φj |X,Θ)



 (22)

Finally, we assume each factor takes a log-linear form with feature functions fk
and parameters θk, as in the G3 framework, Equation 10. Taking the derivative
of a log-linear distribution yields:

∂

∂θk
p(φ|X,Θ) = p(φ|X,Θ)×

(

fk(φ,X)− Ep(φ′|X,Θ) [fk(φ
′, X)]

)

(23)

Substituting back into Equation 20:

∂

∂θk
p(Γ |Φ,Λ,M,Θ) =

p(Γ |M)

p(Φ|Λ)

∏

i



p(φi|X,Θ)×
∑

j

fk(φj , X)− Ep(φ′

j
|X,Θ)

[

fk(φ
′
j , X)

]





(24)

We substitute back into the overall expression for the partial derivative of the
expectation:

∂

∂θk
Ep(Γ |Φ,Λ,M,Θ)r(Γ, ga) =

Ep(Γ |Λ,Φ,M,Θ)r(Γ, ga)×





∑

j

fk(φj , Γ, Λ,M)− Ep(φ′|Γ,Λ,M,Θ) [fk(φ
′, Γ, Λ,M)]





(25)


